Контрольная работа

«Высшая математика 5 вариант»

  • 32 страниц(ы)
  • 1955 просмотров
фото автора

Автор: navip

Элементы векторной алгебры и аналитической геометрии

Элементы линейной алгебры

Введение в математический анализ

Производная и её приложения

Приложения дифференциального исчисления

Дифференциальное исчисление функций нескольких переменных

Неопределённый и определённый интегралы

Теория вероятностей и математическая статистика

5 Даны векторы: в некотором базисе. Показать,что векторы а;в;с образуют базис трехмерного пространства и найти координатывектора d в этом базисе. 3

15 Задание №15: Даны четыре вектора в некотором базисе. Показать, чтовекторы образуют базис, и найти координаты вектора b в этом базисе. 5

25Даны вершины треугольника ABC: Найти: 01 :: уравнения сторон AB и AC; 02 :: уравнение высоты CH; 03 :: уравнение и длину медианы AM; 04 :: угол BAC; 05 :: уравнение прямой, проходящей через вершину C, параллельно стороне AB; 06 :: точку пересечения медианы AM и высоты CH; 07 :: площадь треугольника ABC; 08 :: сделать чертеж. 7

35. Даны координаты вершин пирамиды . Найти: 1) длину ребра А1А2; 2) угол между ребрами и 3) угол между ребром и гранью 4) площадь грани 5) объем пирамиды; 6) уравнение прямой 7) уравнение плоскости 8) уравнение высоты, опущенной из вершины на грань . Сделать чертеж. 9

45/ Cставить уравнение линии для каждой точки которой отношение ee расстояний до точки F(2;0) и до прямой x=0,5 равно 2. 11

55. Найти матрицу обратную матрице 12

65. Дана система линейных уравнений Доказать её совместимость и решить двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления. 13

75 Даны 2 преобразования. Средствами матричного исчисления найти преобразование, выражающее Даны два линейных преобразования. Средствами матричного исчисления найти преобразование, выражающее через 15

85 Найти пределы 16

95 Найти пределы 17

105. Задана функция y=f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж. 18

5 Даны векторы: в некотором базисе. Показать,что векторы а;в;с образуют базис трехмерного пространства и найти координатывектора d в этом базисе. 3

15 Задание №15: Даны четыре вектора в некотором базисе. Показать, чтовекторы образуют базис, и найти координаты вектора b в этом базисе. 5

25Даны вершины треугольника ABC: Найти: 01 :: уравнения сторон AB и AC; 02 :: уравнение высоты CH; 03 :: уравнение и длину медианы AM; 04 :: угол BAC; 05 :: уравнение прямой, проходящей через вершину C, параллельно стороне AB; 06 :: точку пересечения медианы AM и высоты CH; 07 :: площадь треугольника ABC; 08 :: сделать чертеж. 7

35. Даны координаты вершин пирамиды . Найти: 1) длину ребра А1А2; 2) угол между ребрами и 3) угол между ребром и гранью 4) площадь грани 5) объем пирамиды; 6) уравнение прямой 7) уравнение плоскости 8) уравнение высоты, опущенной из вершины на грань . Сделать чертеж. 9

45/ Cставить уравнение линии для каждой точки которой отношение ee расстояний до точки F(2;0) и до прямой x=0,5 равно 2. 11

55. Найти матрицу обратную матрице 12

65. Дана система линейных уравнений Доказать её совместимость и решить двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления. 13

75 Даны 2 преобразования. Средствами матричного исчисления найти преобразование, выражающее Даны два линейных преобразования. Средствами матричного исчисления найти преобразование, выражающее через 15

85 Найти пределы 16

95 Найти пределы 17

105. Задана функция y=f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж. 18

115 Найти производные за данных функций. 21

125 Найти наибольшее и наименьшее значения функции y=f(x) на отрезке [a,b]. 21

135 Исследовать методами дифференциального исчисления функцию y=f(x) и, используя результаты исследования, построить её график. 21

145 Исследовать методами дифференциального исчисления функцию y=f(x) и, используя результаты исследования, построить её график. 21

155 Дифференциальное исчисление функции нескольких переменных. 23

165 Даны функция и две точки и . Требуется: 1) вычислить значение функции в точке 2) вычислить приближенное значение функции в точке , исходя из значения функции в точке и заменив приращение функции при переходе от точки к точке дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом; 4) составить уравнение касательной плоскости к поверхности в точке . 24

175 Найти наименьшее и наибольшее значения функции в замкнутой области , заданной системой неравенств. Сделать чертеж. 25

185 Даны функция , точка и вектор . Найти: 1) gradz в точке ; 2) производную в точке по направлению вектора . 26

195 Экспериментально получены пять значений искомой функции при пяти начениях аргумента, которые записаны в таблице Методом наименьших квадратов найти функцию , выражающую приближённо (аппроксимирующую) функцию . Сделать чертёж, на котором в декартовой системе координат построить экспериментальные точки и график аппроксиимирующей функции . 27

205. Найти полный дифференциал z=f(x,y) 28

215. Найти неопределенные интегралы. В двух первых примерах (п.а и б) результаты проверить дифференцированием. 30

225. Найти неопределенные интегралы. В двух первых примерах (п.а и б) результаты проверить дифференцированием. 31

235. Вычислить значение определенного интеграла по формуле Ньютона-Лейбница. 31

25Даны вершины треугольника ABC: Найти: 01 :: уравнения сторон AB и AC; 02 :: уравнение высоты CH; 03 :: уравнение и длину медианы AM; 04 :: угол BAC; 05 :: уравнение прямой, проходящей через вершину C, параллельно стороне AB; 06 :: точку пересечения медианы AM и высоты CH; 07 :: площадь треугольника ABC; 08 :: сделать чертеж. 7

35. Даны координаты вершин пирамиды . Найти: 1) длину ребра А1А2; 2) угол между ребрами и 3) угол между ребром и гранью 4) площадь грани 5) объем пирамиды; 6) уравнение прямой 7) уравнение плоскости 8) уравнение высоты, опущенной из вершины на грань . Сделать чертеж. 9

45/ Cставить уравнение линии для каждой точки которой отношение ee расстояний до точки F(2;0) и до прямой x=0,5 равно 2. 11

55. Найти матрицу обратную матрице 12

65. Дана система линейных уравнений Доказать её совместимость и решить двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления. 13

75 Даны 2 преобразования. Средствами матричного исчисления найти преобразование, выражающее Даны два линейных преобразования. Средствами матричного исчисления найти преобразование, выражающее через 15

85 Найти пределы 16

95 Найти пределы 17

105. Задана функция y=f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж. 18

115 Найти производные за данных функций. 21

125 Найти наибольшее и наименьшее значения функции y=f(x) на отрезке [a,b]. 21

135 Исследовать методами дифференциального исчисления функцию y=f(x) и, используя результаты исследования, построить её график. 21

145 Исследовать методами дифференциального исчисления функцию y=f(x) и, используя результаты исследования, построить её график. 21

155 Дифференциальное исчисление функции нескольких переменных. 23

165 Даны функция и две точки и . Требуется: 1) вычислить значение функции в точке 2) вычислить приближенное значение функции в точке , исходя из значения функции в точке и заменив приращение функции при переходе от точки к точке дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом; 4) составить уравнение касательной плоскости к поверхности в точке . 24

175 Найти наименьшее и наибольшее значения функции в замкнутой области , заданной системой неравенств. Сделать чертеж. 25

185 Даны функция , точка и вектор . Найти: 1) gradz в точке ; 2) производную в точке по направлению вектора . 26

195 Экспериментально получены пять значений искомой функции при пяти начениях аргумента, которые записаны в таблице Методом наименьших квадратов найти функцию , выражающую приближённо (аппроксимирующую) функцию . Сделать чертёж, на котором в декартовой системе координат построить экспериментальные точки и график аппроксиимирующей функции . 27

205. Найти полный дифференциал z=f(x,y) 28

215. Найти неопределенные интегралы. В двух первых примерах (п.а и б) результаты проверить дифференцированием. 30

225. Найти неопределенные интегралы. В двух первых примерах (п.а и б) результаты проверить дифференцированием. 31

235. Вычислить значение определенного интеграла по формуле Ньютона-Лейбница. 31

Примечания к работе

В работе также есть подробное решение задач Форматы: Word

Покупка готовой работы
Тема: «Высшая математика 5 вариант»
Раздел: Математика
Тип: Контрольная работа
Страниц: 32
Цена: 1450 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы

Не подошла эта работа?

Воспользуйтесь поиском по базе из более чем 40000 работ

Другие работы автора
Наши услуги
Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 2 дней

Контрольная работа на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

682 автора

помогают студентам

23 задания

за последние сутки

10 минут

среднее время отклика