Курсовая работа
«Интерполяция многочленов методами Ньютона и Лагранжа»
- 10 страниц
Интерполяция многочленов методами Ньютона и Лагранжа.
Постановка задачи интерполяции и общие идеи её решения.
Одной из важнейших задач численного анализа является задача интерполяции функции: требуется восстановить функцию f(x) для всех значений x [a, b] если известны её значения в некотором конечном числе точек этого отрезка. Эти известные значения, как правило, находятся в результате наблюдений или измерений в каком – то эксперименте либо в результате каких – то вычислений.
Интерполяция применяется во многих задачах, связанных с вычислениями. Укажем некоторые из этих задач. Обработка физического эксперимента – построение приближенных формул по данным вычислительного эксперимента. Здесь возникают нестандартные задачи интерполяции, так как обычно пишутся формулы, возможно, более простой структуры.
Интерполяционные формулы используются также при вычислении интегралов, при написании разностных аппроксимаций для дифференциальных уравнений, на основе интегральных тождеств.
Часто требуется восстановить функцию f (x) на отрезке a ≤ x ≤ b, если известны её значения в некотором конечном числе точек этого отрезка. Например, пусть на отрезке a ≤ x ≤ b задана сетка:
= и в её узлах заданы значения функции у (x), равные у ( ) = , . . . , у ( ) = , . . . , у ( ) = . Требуется построить интерполянту – функцию f(x), совпадающую с функцией у (x) в узлах сетки:
f( ) = i = 0, 1, . . . , n.
Основная цель интерполяции – получить быстрый (экономичный) алгоритм вычисления значений f (x) для значений x, не содержащихся в таблице данных. Интерполирующие функции строятся в виде линейных комбинаций некоторых элементарных функций:
f(x) = ,
где { } – фиксированные линейно независимые функции, - не определённые пока коэффициенты. В качестве линейно- независимых функций можно выбрать степенные полиномы, что и делается в интерполяционных методах Ньютона и Лагранжа.
Описание интерполирования методом Лагранжа.
Интерполяционная формула Лагранжа:
L (x) = , где L (x) - многочлен n-й степени. x - абсцисса k-го узла функции, а f(x ) - его ордината. Подставляя вместо x в формулу многочлена конкретное значение, мы можем найти значение многочлена для этой точки.
Текст программы
Program KursF;
uses crt, graph;
const
Men=4;
Menu:ARRAY [1.Men] of string = ('Metod Logranzha',
'Metod Nyutona',
'O programme',
'Exit (ESC)');
var
NM,DF,CIM,DK :CHAR;
K,K1,MAX,I,N :INTEGER;
REZ :BOOLEAN;
O :TEXT;
{---------------------------------------------}
Procedure Oprog;
BEGIN
textbackground(0);
textcolor(2);
ASSIGN (O,'a:\O_PROG.txt');
RESET (O);
WHILE NOT EOF (O) DO
BEGIN
READ (O,CIM);
WRITE (CIM);
DELAY (12000)
END;
CLOSE (O);
READLN;
END;
{---------------------------------------------}
Procedure lograng;
var
g, a, H, J1, b: real;
k, i, n, n1, j, Gd, Gm, ii, e1, f1: integer;
Y, X, z, z1: array [1.50] of real;
begin
repeat
clrscr;
write('Vvedite kolichestvo tochek: ');
readln(n);
if n<=0 then
begin
writeln;
write('Vvodit nado polozhitelnoe chislo! Nazhmite Enter');
readln;
end;
until n>0;
writeln;
for i:=1 to n do
begin
Write('vvedite x',i,': '); Readln(X[i]);
Write('vvedite y',i,': '); Readln(Y[i]);
writeln;
end;
.
.
Описание пользовательского интерфейса программной реализации
вышеперечисленных методов.
Для запуска данной программы следует выделив файл 1.exe, нажать клавишу “Enter”. На экране появится главное меню:
Выбор пунктов осуществляется перемещением выделения на них клавишами «↑» и «↓» соответственно вверх и вниз и затем нажатием «Enter» на выделенном пункте. Затем мы выбираем пункт меню «Metod Lagranzha» и перед нами появится окно:
То есть после ввода данных (количества точек, их значений и значения абсциссы искомой точки) выводиться ответ. Затем после нажатия “Enter” выводиться график проинтерполированной функции:
Затем после очередного нажатия “Enter” мы вновь выходим в главное меню и после совершения аналогичных действий, но уже в пункте “Metod Nyutona” мы получим следующие результаты:
После нажатия “Enter” выводиться график функции:
При выборе пункта “O programme” на экран выводится информация, находящаяся в текстовом файле O_prog на диске 3, 5 А, содержащая краткую аннотацию к программе.
После выполнения каждого пункта мы выходим в главное меню, где повторно можем выбрать один из трёх пунктов. Для завершения работы программы мы должны выбрать пункт «Exit» или нажать клавишу «Esc» находясь в главном меню:
Самарский, Гулин. «Численные методы».
Самарский. «Введение в численные методы».
Фаронов. «Turbo Pascal 7. 0».
К работе прилагается все исходники. Есть приложения.
Тема: | «Интерполяция многочленов методами Ньютона и Лагранжа» | |
Раздел: | Программирование, Базы данных | |
Тип: | Курсовая работа | |
Страниц: | 10 | |
Цена: | 500 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Удобный личный кабинет
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
У нас можно заказать
(Цены могут варьироваться от сложности и объема задания)
682 автора
помогают студентам
42 задания
за последние сутки
10 минут
время отклика
Использование в криминалистике методов других наук
Контрольная работа:
Решение нелинейных уравнений численными методами 10
Контрольная работа:
Решение нелинейных уравнений численными методами 11
Контрольная работа:
Решение нелинейных уравнений численными методами 13
Курсовая работа:
Методы мотивации и стимулирования персонала