Дипломная работа
«Обучение решению олимпиадных задач, как метод развивающий обобщенные задачные умения»
- 37 страниц(ы)
- 3558 просмотров
Автор: navip
Введение. 3
Глава 1 5
§ 1 Исторический обзор возникновения физической олимпиады. 5
§2 Типы соревновательных конкурсов по физике для школьников. 9
2.1 Всероссийская олимпиада. 9
2.2 Российская олимпиада «Турнир юных физиков». 10
2.3 Российская научно социальная программа «шаг в будущее» 12
Глава2 14
§1 О задачах. 14
§2. Методы решения физических задач. 19
Первая часть ознакомление с содержанием задачи. 23
Вторая часть – составление и реализация плана решения. 24
Третья часть – изучение результатов решения задачи. 26
§3. Факторы и критерии отбора задач выносимых на олимпиаду. 27
Тема моей выпускной квалификационной работы «Обучение решению олимпиадных задач, как метод развивающий обобщенные задачные умения».
Цель моей работы состоит в том, чтобы разработать методы обучения решать физические задачи повышенной трудности в связи с подготовкой учащихся к выступлениям на олимпиадах.
Функции олимпиад, такие как:
-формирование мотивации учения.
-совершенствование знаний по предмету.
-развитие творческих способностей.
-развитие умений школьников по решению задач повышенной трудности.
-и другие,
реализуются в процессе решения задач непосредственно при их проведении и главным образом, в процессе подготовки к ним. Центральное место в подго-товке учащихся к выступлениям на олимпиадах занимает обучение умению решать задачи. Процесс подготовки и проведения олимпиад имеет свои осо-бенности и преимущества, которые слабо реализуются в связи с недостаточ-ной разработанностью соответствующих методик. Вышесказанным обуслав-ливается актуальность моей выпускной квалификационной работы.
Структура моей работы такая.
В первой главе мы рассматриваем историю зарождения олимпиадного движения школьников, а также другие виды физических конкурсов.
Во второй главе мы разбираем задачу, как основное понятие работы.
Физическая учебная задача – это ситуация, требующая мысленных и практических действий на основе использования законов и методов физики, направленных на овладение знаниями по физике, умение применять их на практике и развитие мышления.
Также мы рассматриваем классификацию задач. Задачи классифици-руют:
• По роли в формировании понятий
• По типу средств решения.
• По основному способу решения.
• По степени сложности.
• По характеру используемого материала.
Также задачи поисковые, беспоисковые и задачи содержащие избыточную информацию.
Далее мы проанализировали предлагаемые в методической литературе методы решения учебных вычислительных задач с точки зрения дидактики, методики преподавания физики и частных методик ряда авторов работавших в этой области. Такие как Сосновский В. И., Усова В. А., Тулькибаева Н. Н., Ченцов А. А. и другие.
Мы предлагаем методику, которая приемлема для решения олимпиад-ных задач. Эта методика состоит из трех частей. Каждая часть разделена на три этапа.
Также мы рассматриваем методы отбора олимпиадных задач и крите-рии влияющие на их отбор.
Мы предлагаем метод отбора задач на основе игры «Экспертиза». По результатам второй главы мы делали доклад на региональной конференции молодых ученых и аспирантов. По результатам исследований опубликована статья.
§ 1 Исторический обзор возникновения физической олимпиады.
Предметные олимпиады школьников в нашей стране проводятся уже в течение нескольких десятилетий. Столь длительный период существования олимпиадного движения доказывает педагогическую и общественную зна-чимость данной формы внеклассной работы с учащимися, жизненность олимпиад.
Истоками олимпиадного движения школьников можно считать, во-первых, древнегреческие спортивные олимпиады, во-вторых, средневековые научные турниры, в-третьих, конкурсы по решению задач, получившие большое распространение в конце 19 века во многих странах в очной и заоч-ной форме.
Первая олимпиада была проведена в древней Греции в 776 году до нашей эры. Потребность соревнования присуща человеку, поскольку дает возможность выделиться, утвердиться в среде себе подобных существ, а так-же приобрести уверенность в своих силах и проявить способности.
Значительно позже стали организовываться научные турниры. Они но-сили эпизодический характер и имели небольшое число участников. Извест-ны, например, «средневековые математические турниры, проводившиеся в сицилийском королевстве Фридриха 2 Гогенштауфена (первая половина 13 в.) и получившие большое распространение в Италии в эпоху Возрождения». [2, с. 200-201]
Конкурсы по решению задач в России были оорганизованы впервые в конце 19 века посредством “Журнала элементарной математики”, который с 1884 года стал издавать профессор Киевского университета В. П. Ермаков. В 1885 году журнал сменил издателя и название. Журнал стал называться “Вестник опытной физики и элементарной математики”, издателем и одно-временно редактором стал Э. К. Шпачинский. С 1885 года и до закрытия в январе 1917 года в “Вестнике” ежегодно публиковались «задачи на конкурс». Данный конкурс можно считать прообразом современных заочных олимпиад. [3, с.45]
Конкурсы по решению стали систематически проводиться в России с 1886 года, в Румынии и Венгрии с 1894 года, в других странах они были ор-ганизованы значительно позже. [4, с.13] Конкурсы по решению задач прово-дились систематически, но были большей частью заочными, так как органи-зовывались посредством журналов. Большая заслуга их состоит в том, что они давали возможность уже большему числу приобщиться к научным состя-заниям, прививая тем самым интерес к занятиям естественными науками. На рубеже 19 – 20 веков привлечение молодежи к научным занятиям стало осо-бенно актуальным, так как достижения естественных наук стимулировали создание разнообразной техники, управлять которой должны были подготов-ленные люди.
Первая олимпиада школьников в нашей стране была проведена в 1934 году в Ленинградском (ныне Санкт-Петербургском) университете. Ею стала олимпиада по математике. Инициаторами ее проведения являются видные ученые математики: член-корреспондент АН СССР профессор Б. Н. Делоне, профессора В. И. Смирнов, Г. М. Фихтенгольц и В. А. Тартаковский. Так бы-ло положено начало олимпиадному движению школьников в нашей стране. Олимпиады по физике стали проводиться несколько позже математических.
Первая олимпиада школьников по физике была организована в 1938 году в Московском университете на физическом факультете. С этого момен-та в Москве и Ленинграде на базе университетов ежегодно стали проводить-ся городские олимпиады по физике и математике.
Во время Великой отечественной войны олимпиады не проводились, после ее окончания олимпиадное движение стало набирать силу. С 1947 года олимпиады по физике и математике регулярно стали проводиться в таких го-родах как Вологда, Иваново, Иркутск, Смоленск, но в большинстве областей и городов страны олимпиады не были актуальной задачей для школы, так как надо было восстанавливать систему образования. В период 50-ых годов олимпиады начинают приобретать все большую популярность как интерес-ная форма внеклассной работы со школьниками.
Первая Всероссийская олимпиада по физике была организована и про-ведена силами студентов, аспирантов и преподавателей МФТИ в феврале 1962 года. Она прошла в 58 городах страны, а общее число ее участников превысило 6 тысяч человек. Олимпиадное задание было разработано оргко-митетом, в состав которого тогда входили известные в настоящее время ав-торы олимпиадных задач А. П. Савин, Л. Г. Асламазов, Ю. М. Брук, И. Ш. Слободецкий.
В это же время в Сибири прошла первая Всесибирская физико-математическая олимпиада, которая была организована учеными Сибирского отделения АН СССР. Эта олимпиада охватила области от Урала до Тихого океана.
Осенью 1964 года было решено объединить усилия организаторов Все-российской физико-математической олимпиады. В результате был создан Центральный оргкомитет Всероссийской физико-математической олимпиады школьников. Председателем первого оргкомитета стал академик П. Л. Капи-ца. Председателем жюри был выбран академик И. К. Кикоин, автор школь-ных учебников. Было решено организовать Всероссийскую заочную олим-пиаду школьников, и включить экспериментальные задачи отдельным туром.
Олимпиады, проведенные в 1964 – 1966 годах носили название Всерос-сийских, однако в них принимали участие команды и других республик СССР, поэтому в 1967 году Всероссийские олимпиады были переименованы во Всесоюзные. Председателями жюри Всесоюзных олимпиад всегда были видные ученые: И. К. Кикоин, А. И. Алихаян, Н. Д. Кондратьев, С. Я. Шуш-кевич и другие. Таким образом, период до 1970 года характеризуется не только массовостью олимпиадного движения, поскольку олимпиады стали проводиться на территории всего бывшего СССР, но и систематичностью, так как олимпиады стали проводиться ежегодно.
Период с 1970 и до начала 90-ых годов характеризуется стабильностью олимпиадного движения, появляются другие формы внеклассных конкурсов по физике, как, например «физбой». Активное участие в их проведении при-нимает профессорско-преподавательский состав региональных университе-тов.
В настоящее время интерес к олимпиадному движению не только еще больше утвердился, но и рассматривается как неотъемлемый атрибут в обра-зовательном процессе. Сегодня олимпиадное движение состоит из несколь-ких этапов. Первый этап проводится в ноябре – это школьная олимпиада. Второй этап, районная и городская олимпиада, проводится в декабре. Третий этап проводится в зимние каникулы – это республиканская или областная олимпиада. Всероссийская олимпиада проводится во время весенних кани-кул.
§2 Типы соревновательных конкурсов по физике для школьников.
2.1 Всероссийская олимпиада.
Одним из важнейших типов соревнований для школьников является Всероссийская олимпиада. Согласно положению, Всероссийская олимпиада проводится в пять этапов.
Первым этапом является проведение олимпиад в школах (школьный этап). В школьных олимпиадах, организуемых самими учителями, могут уча-ствовать по желанию учащиеся 7 – 11 классов. Этот этап олимпиады является самым массовым. В нем принимают участие более миллиона школьников. Он проводится в ноябре.
Второй этап – районные олимпиады. Они проводятся в декабре по за-даниям, составленным областными (краевыми) оргкомитетами олимпиад. В них принимают участие учащиеся 9 – 11 классов, являющиеся победителями школьных олимпиад. Число участников второго этапа приблизительно 200 тысяч человек.
Третий этап – областные, краевые, республиканские олимпиады. Они проводятся в Феврале под руководством местных органов народного образо-вания. В олимпиадах третьего этапа участвуют команды 9 – 11 классов, сформированные из числа победителей районных олимпиад. Общее число участников – около 10 тысяч школьников. Теоретические и эксперименталь-ные задания для третьего этапа разрабатываются в Методической комиссии Центрального оргкомитета. Местному жюри предоставляются широкие воз-можности дополнять и изменять задания третьего этапа.
Четвертый этап – зональные олимпиады. Вся территория России поде-лена на четыре зоны: Северо-западная, Центральная, Юго-западная зоны и зона Сибири и Дальнего Востока. К зональным олимпиадам приравниваются городские олимпиады Москвы и Санкт-Петербурга. Зональные олимпиады проводятся в марте, в период весенних каникул школьников, по заданиям Методической комиссии Центрального оргкомитета. В них принимают уча-стие команды школьников 9 – 11 классов, сформированные из числа победи-телей третьего этапа, а также победители зонального этапа прошлого года. В этом, предпоследнем, этапе принимают участие примерно 500 школьников.
Пятый этап – заключительный. Он проводится во второй половине ап-реля. В нем принимают участие команды школьников 9 – 11 классов, сфор-мированные из числа победителей зонального этапа, а также победители за-ключительного этапа олимпиады прошлого года. Общее число участников этого этапа около 150 школьников.
Проведением олимпиады на всех ее этапах руководят органы народно-го образования.
Задания для разных этапов олимпиады существенно отличаются по уровню сложности. Наиболее сложные задачи, требующие от учащихся не только ясного понимания основных физических законов, но и творческого умения применять эти законы для объяснения физических явлений, развито-го ассоциативного мышления, сообразительности и т. д., предлагаются на за-ключительном этапе. Полностью справиться с заданием заключительного этапа могут только хорошо подготовленные учащиеся.
Для решения олимпиадных задач требуются знания и умения, не выхо-дящие за рамки программы средней школы. Решение задач, как правило, не требует громоздких вычислений. Основное внимание обращается на физиче-ское содержание задач.
2.2 Российская олимпиада «Турнир юных физиков».
Это интеллектуальное соревнование отличается от традиционных олимпиад тем, что на олимпиадах предлагается решить уже формализован-ные задачи, в то время как задачи ТЮФа сформулированы кратко, очерчивая лишь основную проблему. Это оставляет широкий простор для творческой инициативы в конкретизации проблемы и способов ее решения. Характер за-дач может быть как теоретический, так и экспериментальный. Форма прове-дения турнира учит школьников умению убедительно представлять свои ре-шения проблемы и отстаивать их в научных дискуссиях с соперником. По сложившейся традиции в начале октября международный оргкомитет пред-лагает 17 задач для международного турнира, которые используются для проведения российского и региональных турниров. Региональные турниры проводятся в Екатеринбурге, Москве и Санкт-Петербурге в декабре – январе, а российский турнир – в конце марта. По существу, данная олимпиада явля-ется индивидуальным соревнованием, хотя форма представления и обсужде-ния результатов предполагает участие команды. Такая форма проведения олимпиады нашла активную поддержку за рубежом, и в настоящее время в турнире участвуют 16 стран – от Австралии до Америки.
В состав команд могут входить только школьники. Победитель турни-ра определяется в физических боях. В каждом бою, состоящем из трех дейст-вий, участвуют три команды. Все три команды поочередно выполняют роль докладчика, оппонента и рецензента в порядке, определяемом жеребьевкой. В первом действии оппонент приглашает докладчика представить решение одной из задач. Докладчик имеет право принять вызов либо отказаться от предложенной задачи. В этом случае оппонент предлагает любую другую за-дачу. Время доклада составляет 12 минут. После уточняющих вопросов и от-ветов докладчика слово предоставляется оппоненту, который должен про-анализировать данное докладчиком решение задачи, указать сильные и сла-бые стороны доклада. Выступление оппонента не должно сводиться к изло-жению собственного решения задачи. Время оппонирования – 5 минут. Далее возможна краткая дискуссия докладчика и оппонента. Рецензент может за-дать уточняющие вопросы и докладчику, и оппоненту. В последующем вы-ступлении рецензент дает критическую оценку выступлений докладчика и оппонента. Время рецензирования – 3 минуты. Во втором и третьем действи-ях роли команд меняются циклической перестановкой. Итоги выступления подводит жюри, оценивая работу команд по десятибальной шкале, при чем средний балл докладчика умножается на 3, а оппонента не 2. Победителем боя признается команда, набравшая наибольшее количество очков по итогам трех действий. После отборочных боев проводятся финальные соревнования и определяются победители турнира. Победители регионального турнира по-лучают право участвовать в Российском турнире, а победители Российского турнира – в Международном ТЮФе. Официальный язык международного турнира – английский.
В настоящее время интерес к олимпиадному движению не только еще больше утвердился, но и рассматривается как неотъемлемый атрибут в обра-зовательном процессе.
Первый тур олимпиад проводится в школах, на основе задач, подготов-ленных учителями физики. Часто отбор задач происходит стихийно и интуи-тивно. Учителя подбирают те задачи, которые решались на уроках, или кото-рые им кажутся интересными. Мы рекомендуем отбор задач на школьную олимпиаду проводить на основе следующих факторов:
1. Учебные планы и программы принятые в данной школе.
2. Вид среднего образовательного заведения, где проводиться олимпиада.
3. Опыт умственной деятельности и математическая подготовленность.
4. Учет географических особенностей местности, где проводится олимпиада.
Более высокие уровни олимпиад требуют дополнительно других факто-ров. С учетом сказанного можно выявить требования, прилагаемые к олим-пиадным задачам на первом этапе:
1. Соответствие школьной программе.
2. Занимательность сюжета, нестандартность предметной области задачи.
3. Наличие селекционной задачи (отборочной для сильных учащихся).
А) задача с усложненными математическими расчетами.
Б) задача с усложненной физической картиной.
В) задача, требующая предварительного или заключительного исследова-ния.
4) Типовая задача, которую решит большинство учащихся.
5) Задача, требующая решения в общем виде
6) Задача, требующая логических цепочек умозаключений.
7) Экспериментальная задача, в том числе мысленная, и ее оригинальность.
8) Задача на построение графиков, геометрических схем, рисунков.
Приведем примеры, анализ и решение задач по отдельным критериям:
А) задача с усложненными математическими расчетами
Данный тип задач рекомендуется для выявления уровня математической подготовки учащихся, так как даже в основной школе комплексные задачи требуют от школьников достаточно развитого мышления, математической подготовки.
Пример задачи:
Тело малых размеров соскальзывает с горки высотой H по склону, закан-чивающимся горизонтальным трамплином. Какова должна быть высота трамплина h,чтобы дальность полета тела была наибольшей? Трение и со-противление воздуха не учитывать.[Московская олимпиада 1987г.]
Тема: | «Обучение решению олимпиадных задач, как метод развивающий обобщенные задачные умения» | |
Раздел: | Физика | |
Тип: | Дипломная работа | |
Страниц: | 37 | |
Цена: | 1100 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Удобный личный кабинет
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
Не подошла эта работа?
Воспользуйтесь поиском по базе из более чем 40000 работ
-
Дипломная работа:
Совершенствование системы автоматизации делопроизводства в органах государственной власти
59 страниц(ы) 2017 602
-
Курсовая работа:
Методы половинного и шагового деления Microsoft Excel, MathCAD, Pascal
22 страниц(ы) 2016 953
-
Дипломная работа:
Обучение младших школьников основам эстрадного танца в детском хореографическом коллективе
62 страниц(ы) 2016 1486
-
ВКР:
Методика работы с трехмерной графикой на примере разработки общественного пространства
57 страниц(ы) 2022 335
-
Дипломная работа:
Разработка мобильного приложения для мониторинга сервера
60 страниц(ы) 2022 271
-
Дипломная работа:
Создание компьютерных аранжировок в музыкальном редакторе cubase
62 страниц(ы) 2014 2518
-
Дипломная работа:
Формирование причинно-следственных отношений у учащихся на уроках в скоу viii вида
57 страниц(ы) 2011 2923
-
Дипломная работа:
59 страниц(ы) 2022 232
-
Курсовая работа:
Мотивация работников компаний, действующих в сфере СКС и Т
56 страниц(ы) 2012 2512
-
Контрольная работа:
23 страниц(ы) 2011 2387
682 автора
помогают студентам
23 задания
за последние сутки
10 минут
среднее время отклика
-
ВКР:
Управление учебной деятельностью обучаящихся по овладению методами решения геометрических задач
69 страниц(ы) -
ВКР:
Обучение решению нестандартных задач по алгебре
94 страниц(ы) -
Дипломная работа:
Система подготовки выпускников к решению нестандартных задач по математике в профильных классах
68 страниц(ы) -
Дипломная работа:
Обучение монологической речи на английском языке
56 страниц(ы) -
ВКР:
Информационно-методическое сопровождение процесса подготовки младших школьников к олимпиадам по математике
77 страниц(ы)