Дипломная работа

«Методическое обеспечение курса "кратные и поверхностные интегралы"»

  • 58 страниц
Содержание

Введение. 4

Глава 1. Тройной интеграл 5

§1. Определение тройного интеграла . . . . . . . . . . . . . . . . 5

§2. Сумма Дарбу . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

§3. Классы интегрируемых функций . . . . . . . . . . . . . . . . 7

§4. Сведение тройных интегралов к повторным . . . . . . . . . . 9

§5. Замена переменных в тройном интеграле. Преобразование

пространственных областей . . . . . . . . . . . . . . . . . . 13

§6. Выражение объема в криволинейных координатах . . . . . . 14

§7. Геометрический вывод . . . . . . . . . . . . . . . . . . . . . . 17

§8. Замена переменных в тройных интегралах . . . . . . . . . . 18

Глава 2. Криволинейные интегралы 21

§1. Криволинейные интегралы 1-го рода . . . . . . . . . . . . . . 21

§2. Вычисление криволинейного интеграла 1-го рода . . . . . . 21

§3. Основные свойства криволинейного интеграла 1-го рода . . 23

§4. Криволинейные интегралы 2-го рода . . . . . . . . . . . . . . 24

§5. Вычисление криволинейного интеграла 2-го рода . . . . . . 26

Глава 3. Площадь поверхности 28

§1. Связь между интегралами 1-го и 2-го рода . . . . . . . . . . 28

§2. Формулы Грина. Связь между двойным интегралом и кри-

волинейным интегралом 2-го рода . . . . . . . . . . . . . . 29

§3. Приложения формулы Грина . . . . . . . . . . . . . . . . . . 34

§4. Площади поверхностей . . . . . . . . . . . . . . . . . . . . . 38

§5. Определение площади поверхности . . . . . . . . . . . . . . . 39

§6. Вычисление площади поверхности . . . . . . . . . . . . . . . 40

Глава 4. Поверхностные интегралы 43

§1. Поверхностный интеграл 1-го рода . . . . . . . . . . . . . . . 43

§2. Вычисление поверхностного интеграла 1-го рода . . . . . . . 45

§3. Поверхностный интеграл 2-го рода . . . . . . . . . . . . . . . 46

§4. Вычисление поверхностного интеграла 2-го рода . . . . . . . 47

§5. Формула Стокса . . . . . . . . . . . . . . . . . . . . . . . . . 50

§6. Формула Остроградского . . . . . . . . . . . . . . . . . . . . 53

Заключение. 56

Литература 57

Введение

Данная выпускная квалификационная работа представляет собой

курс лекций по дисциплине “Кратные и поверхностные интегралы” и

может быть использована при подготовке к занятиям. В ее основу по-

ложены лекции, прочитанные студентам специальностей “Прикладная

математика и физика”.

В работе изложены основные понятия, определения, свойства и тео-

ремы, доказательства перечисленных выше разделов.

Для создания дипломной работы используется текстовый редак-

-тор LaTeX, который имеет ряд преимуществ таких, как включение в

текст сколь угодно сложных математических формул, которые прекрас-

но смотрятся на печати; при печати получается текст типографического

качества и т.д.

4

Фрагмент работы

ГЛАВА 1

ТРОЙНОЙ ИНТЕГРАЛ

§1. Определение тройного интеграла

Пусть в пространстве R3 задана конечная замкнутая область Ω и

функция f(x, y, z) – ограниченная функция, определенная в Ω.

1) Разобьем область Ω на конечное число ячеек Ω1,Ω2, . . . ,Ωn;

2) В каждой из этих ячеек выберем точку Mi(xi, yi, zi) ∈ Ωi (i =

1, 2, . . . , n);

3) Сумма

σ =

Σn

i=1

f(Mi)|Ωi|

называется трехмерной интегральной суммой.

Обозначим через

λ = max

i

diamΩi

наибольший из диаметров ячеек Ωi

Определение 1. Функция f называется интегрируемой по области Ω,

если существует предел lim

λ→0

σ, не зависящий ни от способа разбиения Ω

на Ωi, ни от выбора точек Mi.

В таком случае предел lim

λ→0

σ называется тройным интегралом от функ-

ции f по области Ω.

Тройной интеграл обозначается следующим образом

∫ ∫

Ω

f(x, y, z)dxdydz = lim

λ→0

Σn

i=1

f(Mi)|Ωi|

Необходимое условие интегрируемости Если функция f – инте-

грируема в области Ω, то она ограничена.

В самом деле, если бы функция f была неограничена в некотором

промежутке, то при любом разбиении промежутка на части она сохра-

нила бы подобное свойство хоть в одном из частей. Тогда за счет выбора

5

в этой части точки ξ можно было бы сделать значение функции в этой

точке f(ξ), а с ней и интегральную сумму σ, сколь угодно большой. При

этих условиях конечного предела для суммы существовать не может. [1]

§2. Сумма Дарбу

Пусть нам дана функция f ограниченная в области Ωi.

Обозначим через Mi = sup f точную верхнюю границу, а через mi =

inf f точную нижнюю границу функции f(x) в i – м промежутке [xi, xi+1]

и составим суммы

s =

Σn−1

i=0

mi|Ωi|

нижняя (интегральная) сумма Дарбу

S =

Σn−1

i=0

Mi|Ωi|

верхняя (интегральная) сумма Дарбу.

Когда функция f(x) непрерывна, верхняя и нижняя суммы Дарбу

являются наименьшей и наибольшей из интегральных сумм, отвечаю-

щих взятому разбиению, так как в этом случае функция f(x) в каждом

промежутке достигает своих точных границ, и точки ξi можно выбирать

так, чтобы было f(ξi) = mi или f(ξi) = Mi.

В общем случае, из определения нижней и верхней границ имеем

mi ≤ f(ξi) ≤ Mi.

Умножив обе части неравенства на |Ωi| и просуммировав по i получим

s ≤ σ ≤ S.

При фиксированном разбиении суммы s и S будут постоянными числа-

ми, а сумма Ω еще остается переменной, так как числа ξi – произвольные.

За счет выбора ξi можно значения функции f(ξi) сделать сколь угод-

но близкими к mi или к Mi, а значит – сумму σ сделать сколь угодно

6

Заключение

Основными источниками при написании выпускной квалификацион-

ной работы послужили конспекты лекций и монографии по курсу мате-

матический анализ, приведенные в списке литературы.

Данная работа была набрана и отредактирована в среде LaTeX. Для

изучения данной программы использовалась следующие монографии:

К.В. Воронцов “LATEX в примерах” и С.М. Львовский “Набор и верстка

в системе LaTeX”.

Работа содержит необходимый теоретический и практический мате-

риал в виде основных понятий, теорем и решенных примеров.

Практическая значимость данной выпускной квалификационной ра-

боты заключается в том, что она может быть использована в качестве

методического пособия по курсу математический анализ для студентов

специальностей Прикладная математика и физика.

56

Список литературы

Список литературы

[1] Ильин В.А., Позняк Э.Г. Основы математического анализа том 1. –

М.: ООО Издательство АСТ, 2005

[2] Ильин В.А., Позняк Э.Г. Основы математического анализа том 2. –

М.: ООО Издательство АСТ, 2005

[3] Демидович Б.П., Кудрявцев В.А. Краткий курс высшей математики.

– М.: ООО Издательство Астрель; ООО Издательство АСТ, 2001

[4] Демидович П.Б. Сборник задач и упражнений по метематическому

анализу. – М.: Издательство Наука. 1995

[5] Виноградова И.А., Олехник С.Н., Садавничий В.А. Математический

анализ в задачах и упражнениях (часть 2). – М.: Издательство На-

ука. 2002

[6] Фихтенгольц Г. М. Основы математического анализа том 2. – СПб.:

Издательство Лань, 2001

[7] Кудрявцев Л.Д. Сборник задач по математическому анализу том 3.

– М.: Издательство Наука. 2001

57

Покупка готовой работы
Тема: «Методическое обеспечение курса "кратные и поверхностные интегралы"»
Раздел: Математика
Тип: Дипломная работа
Страниц: 58
Цена: 950 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы

У нас можно заказать

(Цены могут варьироваться от сложности и объема задания)

Контрольная на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 3 дней

Решение задач на заказ

Решение задач

от 100 руб.

срок: от 1 дня

Лабораторная работа на заказ

Лабораторная работа

от 200 руб.

срок: от 1 дня

Доклад на заказ

Доклад

от 300 руб.

срок: от 1 дня

682 автора

помогают студентам

42 задания

за последние сутки

10 минут

время отклика