Дипломная работа

«Методическое обеспечение лекционных занятий по курсу функциональный анализ для направления прикладная математика и информатика»

  • 114 страниц(ы)
  • 1735 просмотров
  • 0 покупок
фото автора

Автор: navip

Введение. 5

Глава 1. Топологические пространства. 6

§1. Понятие множества. Характеристика свойств множеств. . . 6

§2. Понятия в топологическом пространстве. База топологии. . 7

§3. Структура открытых множеств и окрестностей. . . . . . . . 10

§4. Метрические пространства. . . . . . . . . . . . . . . . . . . . 11

§5. Замыкание. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

§6. Внутренние точки, внутренние границы. . . . . . . . . . . . 14

§7. Сепарабельное топологические пространства . . . . . . . . . 16

§8. Индуцированная топология. Отделимые пространства. . . . 18

§9. Непрерывное отображение. . . . . . . . . . . . . . . . . . . . 18

§10. Компактные пространства. . . . . . . . . . . . . . . . . . . . 19

Глава 2. Свойства метрических пространств. 22

§1. Сходящиеся последовательности в метрическом пространстве. 22

§2. Критерий полноты. . . . . . . . . . . . . . . . . . . . . . . . 27

§3. Компактные множества в метрическом пространстве. Теорема

Хаусдорфа. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

§4. Отображение компактных множеств. . . . . . . . . . . . . . 31

§5. Критерий компактности. . . . . . . . . . . . . . . . . . . . . 32

§6. Принцип сжимающих отображений и его применение. . . . . 36

§7. Теорема Бэра. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Глава 3. Мера и измеримые множества. 41

§1. Измеримые множества. Мера. Системы множеств. . . . . . . 41

§2. Cистема множеств в евклидовом пространстве. . . . . . . . 42

§3. Функции множеств. . . . . . . . . . . . . . . . . . . . . . . . 44

§4. Мера и её простейшие свойства. Мера в евклидовом пространстве.

45

§5. Внешняя мера. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

§6. Измеримые множества. . . . . . . . . . . . . . . . . . . . . . 50

§7. Сходимость почти всюду. . . . . . . . . . . . . . . . . . . . . 53

§8. Сходимость по мере. . . . . . . . . . . . . . . . . . . . . . . . 56

§9. Единственность предела. . . . . . . . . . . . . . . . . . . . . 57

Глава 4. Интеграл Лебега. 60

§1. Интеграл Лебега для простых и ограниченных функций на

пространстве с конечной мерой. . . . . . . . . . . . . . . . 60

§2. Свойства интеграла( от ограниченных функций). . . . . . . 63

§3. Определение интеграла Лебега в произвольном случае. . . . 67

§4. Предельный переход под знаком интеграла. . . . . . . . . . . 71

§5. Лемма Фату. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Глава 5. Нормированные и гильбертовы пространства. 75

§1. Нормированное линейное пространство. . . . . . . . . . . . . 75

§2. Конечномерные пространства. Конечномерность и компактность.

Теорема Рисса локальной компактности. . . . . . . . . . . 77

§3. Гильбертово пространство. . . . . . . . . . . . . . . . . . . . 78

§4. Ортогональность и ортогональное дополнение . . . . . . . . 79

§5. Ряды Фурье в гильбертовом пространстве. . . . . . . . . . . 80

Глава 6. Линейные операторы в нормированных пространст-

вах. 83

§1. Линейные операторы, непрерывность, ограниченность. . . . 83

§2. Пространство всех линейных непрерывных операторов. . . . 85

§3. Принцип равномерной ограниченности Банаха – Штейнгауза. 86

§4. Обратные операторы. . . . . . . . . . . . . . . . . . . . . . . 88

§5. Замкнутый оператор. . . . . . . . . . . . . . . . . . . . . . . 90

§6. Теорема Банаха о замкнутом графике. . . . . . . . . . . . . 91

§7. Сопряженные пространства . . . . . . . . . . . . . . . . . . . 94

§8. Сопряженный оператор. . . . . . . . . . . . . . . . . . . . . . 97

§9. Самосопряженный оператор. . . . . . . . . . . . . . . . . . . 98

Глава 7. Спектральная теория операторов. 100

§1. Вполне непрерывный оператор. . . . . . . . . . . . . . . . . . 100

§2. Уравнения первого и второго рода. . . . . . . . . . . . . . . . 101

§3. Альтернативы Фредгольма. . . . . . . . . . . . . . . . . . . . 103

§4. Спектр и резольвента. Теорема Гильберта - Шмидта. . . . . 108

Заключение. 113

Литература 114

Данная выпускная квалификационная работа представляет собой курс лекций по дисциплине

Функциональный анализ и может быть использована при подготовке к занятиям. В ее основу положены лекции, прочитанные студентам специальностей Прикладная математика и информатика. В работе изложены основные понятия, определения, свойства и теоремы, доказательства перечисленных выше разделов.

Для создания дипломной работы используется текстовый редактор LaTeX, который имеет ряд преимуществ таких, как включение в текст сколь угодно сложных математических формул, которые прекрасно смотрятся на печати; при печати получается текст типографического качества и т.д.

Весь курс лекций подразделен на семь глав, которые подразделяются на параграфы. Внутри параграфов текст, как правило, группируется по определениям, теоремам, замечаниям, примерам. В первой главе рассматриваются топологические пространства. Во второй главе изучается свойства метрических пространств. Рассматриваются такие теоремы как:

Теорема Хаусдорфа, теорема Бэра. В третьей главе изучаются мера и измеримые множества. В ней рассматриваются такие темы как: измеримые множества, мера, системы множе ств в евклидовом пространстве, внешняя мера, измеримые множества, сходимости, единственность предела. В четвертой главе изучается интеграл Лебега. В эту главу включены такие темы как: интеграл Лебега, свойства интеграла Лебега, лемма Фату.

В пятой главе рассматриваются нормированные и гильбертовы пространства.

В шестой главе линейные операторы в нормированных пространствах.

В седьмой главе рассматривается спектральная теория операторов.

ГЛАВА 1

ТОПОЛОГИЧЕСКИЕ ПРОСТРАНСТВА.

§1. Понятие множества. Характеристика свойств множеств.

В курсе функциональный анализ будут рассматриваться множества чисел, множества точек, множества линий, множества функций и т.п. Множества обозначаются большими буквами A,B,C,M и т.д. Объекты, из которых состоит множество называются элементами множества. Мы будем обозначать их малыми буквами: a, b, c. Запись a ∈ A означает, что a есть элемент множества A. Запись ∅ – пустое множество. Запись A ⊂ B означает, что каждый элемент множества A называют подмножеством множества B. Запись ∪

A - объединение множеств.

Запись ∩ A - персечение множеств. Запись ∞Σ n=1

An - дизъюнктное объединение множеств.

Отображением φ множества M1 в множество M2 обозначается: φ : M1 → M2. Образ элемента x при отображении φ обозначается: x : φ(x) Совокупность всех тех элементов a ∈ M1, образом которых является данный элемент b ∈ M2, называется прообразом элемента b при отображении φ : M1 → M2 и обозначается через φ−1(b). Таким образом, φ−1(b) = {a ∈ M1 : φ(a) = b}. Отображение φ множества M1 в множество M2 называется сюръекцией,если φ(M1) = M2. Теорема 1.1. (о прообразах). Прообраз объединения или пересечения двух множеств равен объединению или пересечению их прообразов соответственно:

ϕ

−1(A ∪ B) = ϕ

−1(A) ∪ ϕ

−1(B)

ϕ

−1(A ∩ B) = ϕ

−1(A) ∩ ϕ

−1(B)

Теорема 1.2. (об образах). Образ объединения двух множеств равен объединению их образов:

ϕ(A ∪ B) = ϕ(A) ∪ ϕ(B)

§2. Понятия в топологическом пространстве. База топологии.

Определение 1. (топология множества) Пусть X – произвольное множество и τ = {U} – совокупность его подмножеств, обладающая следующими свойствами (аксиомы топологии):

1. ∅, X ∈ τ

2. объединение любой совокупности множеств из τ принадлежит τ

3. пересечение любого конечного числа множеств из τ принадлежит τ .

Такая совокупность τ называется топологическим пространством и обозначается X, τ .

Определение 2. Множество X с заданной на нем топологией τ называется топологическим пространством и обозначается (X, τ ).

Определение 3. Подмножества из совокупности τ называются открытыми (в пространстве (X, τ )).

Пример 1. τmin = ∅, x тривиальная топология.

Пример 2. τmax = {множество всех подмножеств X}.

Пример 3. Топология R1 множества всевожможных интервал (a, b) и все множества, представляются в виде объединения интервалов ∪(a, b) является топологией.

Определение 4. B ⊂ X называется замкнутым, если X − B ∈ τ является топологией.

В силу двойственного характера операций в теории множеств совокупность {F} всех замкнутых множеств топологического пространства X, τ удовлетворяет следующим свойствам:

1. X,∅ ∈ {F}

2. пересечение любой совокупности множеств из {F} принадлежащих

{F}(двойственность к топологии).

ГЛАВА 2

СВОЙСТВА МЕТРИЧЕСКИХ ПРОСТРАНСТВ.

§1. Сходящиеся последовательности в метрическом пространстве.

В метрическом пространстве вводится понятие сходимости последовательности. Пусть (X, d) - метрическое пространство.

Определение 23. Говорят, что xn ∈ X сходится к x ∈ X (xn → x0; lim n→∞xn = x0), если d(xn, x0) → 0 при n → ∞.

Лемма 2.1. 1. Если последовательность в метрическом пространстве сходится, то её предел единственный xn → x0, xn → y0 ⇒ x0 = y0.

2. Если последовательность сходится в метрическом пространстве, то она ограничена.

3. Если xn → x0, yn → y0, то⇒ d(xn, yn) → d(x0, y0)(метрика является непрерывной функцией своих аргументов).

Доказательство. 1. Пусть xn → x0; xn → y0. Применяя неравенство треугольника, получим: 0 ≤ d(x0, y0) ≤ d(x0, xn0) + d(xn0, y0) < 2ε. Оба слагаемых в правой части стремятся к нулю, т.к. d(a, b) ≥ 0 и не зависит от n, то ⇒ d(x0, y0) = 0 ⇒ x0 = y0.

2. Утверждение легко вытекает из определения сходимости последовательности заметим xn → x0 ⇒ d(xn, x0) → 0 ⇒ ∀ε > 0, ∃n0 : ∀n ≥ n0. Следовательно все члены последовательности за исключением конечного числа попадают в окружность S(x, ε) т.к. любой конечный набор элементов является всегда ограниченным ⇒ ограниченность всей последовательности.

3. По неравенству 4-х угольника: |d(x, y) − d(xn, yn)| ≤ d(x, xn) + d(y, yn) ⇒ при n → ∞ получаем утверждение леммы.

Определение 24. Последовательность xn ∈ X называется фундаментальной последовательностью, если для ∀ε > 0, ∃N : d(xn, xm) < ε если n,m ≥ N

Теорема 2.1. (о сходимости последовательностей) Пусть {xn} – последовательность из метрического пространства X. Следующие условия эквивалентны:

1. {xn}-сход. к x0

2. ∀ подпоследовательность {xn}сходится x0

3. для ∀ подпоследовательности {xnk } существует подпоследовательность {xnk } сход. к x0.

4. {xn}-фундаментальная и любая подпоследовательность {xnk } сходится к x0.

5. xn- фундаментальная и ∃ подпоследовательность {xnk } сходящаяся к x0.

Доказательство. 1⇒2 и 2⇒3. Стандартные утверждения из математического анализа: подпоследовательность сходящейся последовательности сходится к тому же пределу: доказательство абсолютно аналогично.

4⇒ 5 Очевидно.

3⇒ 4 вытекает из 5⇒1. Действительно, если 5⇒ 1 уже доказано,то в силу условий п.4 подпоследовательность {xnk

} фундаментальна, но по п.3 у неё существует сходящаяся к x подпоследовательность. Тогда из

5⇒ 1 вытекает, что {xnk } сама сходится к x.

Данная работа была набрана и отредактирована в среде LaTeX. Для изучения данной программы использовались следующие монографии:

К.В. Воронцов "LATEX в примерах"и С.М. Львовский "Набор и верстка в системе LaTeX".

В результате проделанной работы был составлен обзор по курсу функ-циональный анализ.

Работа содержит необходимый теоретический материал в виде основных понятий, теорем, доказательств.

Практическая значимость данной выпускной квалификационной работы заключается в том, что она может быть использована в качестве методического пособия по курсу функциональный анализ для студентов специальностей "Прикладная математика и информатика".

[1] В. Босс. Лекции по математике, том5 – М.: Наука, 2005. - 448с.

[2] Б. З. Вулих. Введение в функциональный анализ – М.: Наука, 1967. - 296с.

[3] А. Н. Колмагоров, С. В. Фомин. Элементы теории функций и функционального анализа – М.: Наука, 2004. - 329с.

[4] С.С. Кутателадзе. Основы функционального анализа – М.: Наука, 2000. - 466с.

[5] Л. В. Канторович, Г.П. Акимов. Функциональный анализ – М.: Наука, 1984. - 208с.

[6] Л. А. Люстерник, В. И. Соболев. Краткий курс функционального анализа. – М.: Наука, 1982.

[7] С.М. Львовский. Набор и верстка в пакете LaTeX. – М.: МЦНМО, 2003.

[8] К.В. Воронцов. LaTeX в примерах, 2005.

Покупка готовой работы
Тема: «Методическое обеспечение лекционных занятий по курсу функциональный анализ для направления прикладная математика и информатика»
Раздел: Математика
Тип: Дипломная работа
Страниц: 114
Цена: 1250 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы

Не подошла эта работа?

Воспользуйтесь поиском по базе из более чем 40000 работ

Другие работы автора
Наши услуги
Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 2 дней

Контрольная работа на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

682 автора

помогают студентам

23 задания

за последние сутки

10 минут

среднее время отклика