Контрольная работа

«Высшая математике (УФИМСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ЭКОНОМИКИ И СЕРВИСА)»

  • 51 страниц(ы)
  • 526 просмотров
фото автора

Автор: navip

Элементы векторной алгебры и аналитической геометрии

Элементы линейной алгебры

Введение в математический анализ

Производная и её приложения

Приложения дифференциального исчисления

Дифференциальное исчисление функций нескольких переменных

Неопределённый и определённый интегралы

Теория вероятностей и математическая статистика

5 Даны векторы: в некотором базисе. Показать,что векторы а;в;с образуют базис трехмерного пространства и найти координатывектора d в этом базисе. 4

15 Задание №15: Даны четыре вектора в некотором базисе. Показать, чтовекторы образуют базис, и найти координаты вектора b в этом базисе. 6

25Даны вершины треугольника ABC: Найти: 01 :: уравнения сторон AB и AC; 02 :: уравнение высоты CH; 03 :: уравнение и длину медианы AM; 04 :: угол BAC; 05 :: уравнение прямой, проходящей через вершину C, параллельно стороне AB; 06 :: точку пересечения медианы AM и высоты CH; 07 :: площадь треугольника ABC; 08 :: сделать чертеж. 8

35. Даны координаты вершин пирамиды . Найти: 1) длину ребра А1А2; 2) угол между ребрами и 3) угол между ребром и гранью 4) площадь грани 5) объем пирамиды; 6) уравнение прямой 7) уравнение плоскости 8) уравнение высоты, опущенной из вершины на грань . Сделать чертеж. 10

45/ Cставить уравнение линии для каждой точки которой отношение ee расстояний до точки F(2;0) и до прямой x=0,5 равно 2. 12

55. Найти матрицу обратную матрице 13

65. Дана система линейных уравнений Доказать её совместимость и решить двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления. 14

75 Даны 2 преобразования. Средствами матричного исчисления найти преобразование, выражающее Даны два линейных преобразования. Средствами матричного исчисления найти преобразование, выражающее через 16

85 Найти пределы 17

95 Найти пределы 18

105. Задана функция y=f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж. 19

115 Найти производные за данных функций. 22

125 Найти наибольшее и наименьшее значения функции y=f(x) на отрезке [a,b]. 22

135 Исследовать методами дифференциального исчисления функцию y=f(x) и, используя результаты исследования, построить её график. 22

145 Исследовать методами дифференциального исчисления функцию y=f(x) и, используя результаты исследования, построить её график. 22

155 Дифференциальное исчисление функции нескольких переменных. 24

165 Даны функция и две точки и . Требуется: 1) вычислить значение функции в точке 2) вычислить приближенное значение функции в точке , исходя из значения функции в точке и заменив приращение функции при переходе от точки к точке дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом; 4) составить уравнение касательной плоскости к поверхности в точке . 25

175 Найти наименьшее и наибольшее значения функции в замкнутой области , заданной системой неравенств. Сделать чертеж. 26

185 Даны функция , точка и вектор . Найти: 1) gradz в точке ; 2) производную в точке по направлению вектора . 27

195 Экспериментально получены пять значений искомой функции при пяти начениях аргумента, которые записаны в таблице Методом наименьших квадратов найти функцию , выражающую приближённо (аппроксимирующую) функцию . Сделать чертёж, на котором в декартовой системе координат построить экспериментальные точки и график аппроксиимирующей функции . 28

205. Найти полный дифференциал z=f(x,y) 29

215. Найти неопределенные интегралы. В двух первых примерах (п.а и б) результаты проверить дифференцированием. 31

225. Найти неопределенные интегралы. В двух первых примерах (п.а и б) результаты проверить дифференцированием. 32

235. Вычислить значение определенного интеграла по формуле Ньютона-Лейбница. 32

Теория вероятностей и математическая статистика

29.5. Для сигнализации об аварии установлены три независимо работающих устройства. Вероятность того, что при аварии сработает первое устройство, равна 0,9, второе – 0,95, третье – 0,85. Найти вероятность того, что при аварии сработает: а) только одно устройство; б) только два устройства; в) все три устройства.

Решение.

а) p = (1-0.9)*(1-0.95)*0.85+(1-0.95)*(1-0.85)*0.9+(1-0.85)*(1-0.9)*0.95=0.02525

b) p = 0.9*0.95*(1-0.85)+0.9*0.85*(1-0.95)+0.95*0.85*(1-0.9)=0.24725

c) p = 0.9*0.95*0.85=0.72675

Элементы математического программирования

Задача 37. Построить на плоскости область решений системы линейных неравенств и геометрически найти наименьшее и наибольшее значения линейной функции.

37.5.

Необходимо найти минимальное значение целевой функции F = 6x1+4x2 → min, ограничений:

9x1+11x2≥48, (1)

5x1-x2≤44, (2)

-x1+13x2≤6, (3)

x1 ≥ 0, (4)

x2 ≥ 0, (5)

Границы области допустимых решений.

Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи.

Обозначим границы области многоугольника решений.

Рассмотрим целевую функцию задачи F = 6x1+4x2 → min.

Построим прямую, отвечающую значению функции F = 0: F = 6x1+4x2 = 0. Вектор-градиент, составленный из коэффициентов целевой функции, указывает направление минимизации F(X). Начало вектора – точка (0; 0), конец – точка (6; 4). Будем двигать эту прямую параллельным образом. Поскольку нас интересует минимальное решение, поэтому двигаем прямую до первого касания обозначенной области. На графике эта прямая обозначена пунктирной линией.

Прямая F(x) = const пересекает область в точке A. Так как точка A получена в результате пересечения прямых (1) и (3), то ее координаты удовлетворяют уравнениям этих прямых:

9x1+11x2=48

-x1+13x2=6

Решив систему уравнений, получим: x1 = 4.3594, x2 = 0.7969

Откуда найдем минимальное значение целевой функции:

F(X) = 6*4.3594 + 4*0.7969 = 29.3438

Прямая F(x) = const пересекает область в точке D. Так как точка D получена в результате пересечения прямых (2) и (3), то ее координаты удовлетворяют уравнениям этих прямых:

5x1-x2=44

-x1+13x2=6

Решив систему уравнений, получим: x1 = 9.0313, x2 = 1.1563

Откуда найдем максимальное значение целевой функции:

F(X) = 6*9.0313 + 4*1.1563 = 58.8125

Задача 34. Случайная величина X задана функцией распределения F(x):

Требуется:

а) найти плотность распределения вероятностей;

б) построить графики интегральной и дифференциальной функций;

в) найти математическое ожидание и дисперсию случайной величины X;

г) определить вероятность того, что X примет значение, заключенное в интервале

Для задачи 3 необходимые параметры вычисляем по формулам:

A, B, C

3 10 5

1. Кудрявцев В.А. Краткий курс высшей математики / В.А. Кудрявцев, Б.П. Демидович. – 6-е изд. – М., 1985.

2. Венцель Е.С. Теория вероятностей / Е.С. Венцель. – М.: Высш. шк.; 1999.

3. Бугров Я.С. Высшая математика: Элементы линейной алгебры и аналитической геометрии / Я.С. Бугров, С.М. Никольский. – Ростов н/Д.: Феникс, 1997.

4. Бугров Я.С. Высшая математика: Дифференциальное и интегральное исчисления / Я.С. Бугров, С.М. Никольский. – Ростов н/Д.: Феникс, 1997.

5. Кузнецов А.В. Высшая математика: Математическое программирование / А.В. Кузнецов, В.А. Сакович, Н.И. Холод. – Минск: Высшая школа, 1994.

6. Сборник задач и упражнений по высшей математике: Мат. программирование: Учеб. пособие / А.В.Кузнецов, В.А. Сакович, Н.И.Холод и др.; Под общей ред. А.В. Кузнецова, Р.А. Рутковского. – Мн. Высш. шк. 2002.

7. Высшая математика для экономистов: Учебник для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман, Под ред. проф. Н.Ш. Кремера. – М.: Банки и биржи, ЮНИТИ, 2003.

8. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. – М.: ЮНИТИ-ДАНА, 2000. – 543 с.

9. Шипачев В.С. Высшая математика. Учебник для вузов / В.С. Шипачев. – М.: Высш. шк., 2003.

10. Гмурман В.Е. Теория вероятностей и математическая статистика. Учеб. пособие для вузов. – М.: Высш. шк., 2001. – 479 с.

11. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. Учеб. пособие для студентов вузов / В.Е. Гмурман. – М.: Высш.шк., 2001. – 400 с.

12. Данко П.Е. Высшая математика в упражнениях и задачах. – В 2 ч. Ч. 1, 2. Учеб. пособие для втузов / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. – М.: ОНИКС 21 век, Мир и образование, 2003.

13. Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. спец. вузов / И.Л. Акулич. – М.: Высш. шк., 1986.

14. Общий курс высшей математики для экономистов: Учебник / Под ред. В.И.Ермакова. – М.: ИНФРА-М., 2001.

15. Хазанова Л.Э. Математические методы в экономике: Учеб. пособие / Л.Э. Хазанова. – М.: БЕК, 2002.

16. Пинегина М.В. Математические методы и модели в экономике / М.В. Пинегина. – М.: Экзамен, 2002.

17. Ефимов Н.В. Краткий курс аналитической геометрии. – 6-12-е изд. / Н.В. Ефимов. – М.: ФИЗМАТЛИТ, 2002.

18. Пискунов Н.С. Дифференциальное и интегральное исчисление для втузов / Н.С. Пискунов. – М.: Интеграл Пресс, 2002.

19. Пантелеев А.В. Обыкновенные дифференциальные уравнения в примерах и задачах. Учеб. пособие / А.В. Пантелеев, А.С. Якимова, А.В. Босов. – М.: Высш. шк., 2001.

20. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. – 4-е изд. / Д.В. Беклемишев. – М.: Физико-математическая литература, 2002.

21. Гнеденко Б.В. Курс теории вероятностей / Б.В. Гнеденко. – М.: Наука, 2002.

22. Колемаев В.А. Теория вероятностей и математическая статистика / В.А. Колемаев, О.В. Староверов, В.Б. Турундаевский. – М.: Высш. шк., 1991.

23. Бугров Я.С. Высшая математика: Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного / Я.С. Бугров, С.М. Никольский. – Ростов н/Д.: Феникс, 1997.

24. Сборник задач по математике для втузов: Линейная алгебра и основы математического анализа / Под ред. Н.В. Ефимова, Б.П. Демидовича. – М.: Наука, 1986.

25. Сборник задач по математике для втузов: Специальные разделы математического анализа / Под ред. Ефимова Н.В., Б.П. Демидовича. – М.: Наука, 1986.

26. Пантелеев А.В. Теория функций комплексного переменного и операционное исчисление в примерах и задачах: Учеб. пособие / А.В. Пантелеев, А.С. Якимова. – М.: Высш.шк., 2001.

27. Ильин В.А. Высшая математика: Учебник / В.А. Ильин, А.В. Куркина. – М.: ТК Велби, 2002.

28. Кузнецов Ю.Н. Математическое программирование / Ю.Н. Кузнецов, В.И. Кузубов. – М.: Высш. шк., 1980.

29. Минюк С.А. Математические методы и модели в экономике: Учеб. пособие / С.А. Минюк, Е.А. Ровба, К.К. Кузьмич. – Мн.: Тетра Системс, 2002.

30. Колемаев В.А. Теория вероятностей и математическая статистика: Учебник / В.А. Колемаева, Калинина В.Н.; Под ред. В.А. Колемаева. – М.: ИНФРА-М., 1997.

31. Гусак А.А. Высшая математика. – В 2 т. – Т. 1.: Учеб. пособие для студентов вузов / А.А. Гусак. – Мн.: Тетра Системс, 1998. – 544 с.; Т. 2.: Учеб. пособие для студентов вузов. – Мн.: Театра Системс, 1998. –288 с.

32. Гусак А.А. Справочное пособие по решению задач: аналитическая геометрия и линейная алгебра / А.А. Гусак. – Мн.: Тетра системс, 1998. – 288 с.

33. Гусак А.А. Справочное пособие по решению задач: математический анализ и дифференциальные уравнения / А.А. Гусак. – Мн.: Тетра системс, 1998. – 416 с.

34. Гусак А.А. Справочное пособие по решению задач: Теория вероятностей / А.А. Гусак, Е.А. Бришикова. – Мн.: Тетра системс, 1999. – 288 с.

35. Математическое программирование: Программа, методические указания и контрольные задания для студентов заочников инженерно-экономических и экономических специальностей высших учебных заведений / В.Г. Суздаль, Л.Г. Седых, Ю.В. Боровских. – М.: Высш. шк., 1983. – 48 с.

36. Высшая математика: Программа, методические указания и контрольные задания для студентов заочников экономических специальностей высших учебных заведений / Д.П. Полозков. – М.: Высш. шк., 1976. – 55 с.

37. Теория вероятностей и математическая статистика. Методические указания и контрольные задания для студентов специальностей 0608 Бухгалтерский учет, контроль и анализ хозяйственной деятельности и 0717 Экономика, управление в бытовом и жилищно-коммунальном обслуживании, городском хозяйстве. – В 2 ч. / Сост.: В.С. Котанов. – М.: Московский технол. ин-т.

38. Шапкин А.С. Ч. 1. Случайные события и случайные величины М., 1989. – 51 с.; Ч. 2. Математическая статистика. – 41 с.

39. Сборник задач по высшей математике для экономистов: Учеб. пособие / Под ред. В.И. Ермакова. – М.: ИНФРА-М, 2001.

40. Красс М.С. Математика для экономических специальностей: Учебник / М.С. Красс. – М.: Дело, 2002.

41. Красс М.С. Основы математики и ее приложения в экономическом образовании / М.С. Красс, Б.П. Чупрынов. – М.: Дело, 2001.

42. Пантелеев А.В. Методы оптимизации в примерах и задачах: Учеб. пособие / А.В. Пантелеев, Т.А. Летова. – М.: Высш. шк., 2002.

43. Романенко В.К. Сборник задач по дифференциальным уравнениям и вариационному исчислению / В.К. Романенко, Н.Х. Агаханов, В.В. Власов, Л.И. Коваленко. – М.: ЮНИМЕДИАСТАЙЛ, 2002.

Примечания к работе

Форматы: Word. Есть решения более 30 задач

Покупка готовой работы
Тема: «Высшая математике (УФИМСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ЭКОНОМИКИ И СЕРВИСА)»
Раздел: Математика
Тип: Контрольная работа
Страниц: 51
Цена: 900 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы

Не подошла эта работа?

Воспользуйтесь поиском по базе из более чем 40000 работ

Другие работы автора
Наши услуги
Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 2 дней

Контрольная работа на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

682 автора

помогают студентам

23 задания

за последние сутки

10 минут

среднее время отклика