Лабораторная работа

«Численные методы (excel № 1. (БирГСПА)»

  • 12 страниц
Содержание

Лабораторная работа № 1

Введение

1) Отделить корни уравнения графически и программно.

2) Уточнить корни (все!) уравнения методом половинного деления с точностью   0,0001 , указать число разбиений отрезка.

Фрагмент работы

1) Отделить корни уравнения графически и программно.

2) Уточнить корни (все!) уравнения методом половинного деления с точностью   0,0001 , указать число разбиений отрезка.

Решение.

Отделим корень уравнения на графическим методом. Для этого

табулируем функцию.

Уменьшаем масштаб.

Получаем 2 отрезка: [-1;0] и [1;2].

Уточняем корень на отрезке [-1;0].

Для уточнения используем метод половинного деления по схеме:

Составляем таблицу.

Приближенное решение

Погрешность

Число итераций 14

Следовательно, приближенное значение корня равно

Запишем приближенное значение корня только верными значащими цифрами в узком смысле.

Округлим до

Найдем число верных знаков для

Округлим до

Найдем число верных знаков для

Округлим до

Найдем число верных знаков для

Получаем приближенное решение с числом верных знаков

Уточняем корень на отрезке [1;2].

Для уточнения используем метод половинного деления по схеме:

Составляем таблицу.

Приближенное решение

Погрешность

Число итераций 14

Следовательно, приближенное значение корня равно

Запишем приближенное значение корня только верными значащими цифрами в узком смысле.

Округлим до

Найдем число верных знаков для

Получаем приближенное решение с числом верных знаков

Заключение

Получаем приближенное решение с числом верных знаков

Список литературы

1. Демидович Б.Н., Марон И.А. Основы вычислительной математики. -М.: Наука, 1966.- 664 с.

2. Бахвалов Н.С. Численные методы -М.: Наука, 1975. – 632 с.

3. Березин Н.С., Жидков Н.П. Методы вычислений. – Т.1. - М.: Наука, 1966. – 464 с.

4. Березин Н.С., Жидков Н.П. Методы вычислений. – Т.2. - М.: Физматгиз, 1962.- 640 с.

5. Самарский А.А. Теория разностных схем. - М.: Наука, 1983.

6. Иванов В.В. Методы вычислений на ЭВМ. Киев: Наукова думка, 1986.

7. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. -М.: Наука, 1986, - 288 с.

8. Сборник Задач по методам вычислений: Учебное пособие: Для вузов. / Под ред. П.И. Монастырского. - 2-е изд. перераб. и доп. -М.: Физматлит, 1994. -320 с.

9. Воробьева Г.Н., Данилова А.Н. Практикум по вычислительной математике. -М.: Высшая школа, 1990.

10. Лапчик М.П. Рагулина М.И., Хеннер Е.К. Численные методы: Уч. Пособие для ст. вузов. –М.: Изд. Центр «Академия», 2004. – 384 с.

11. Васильев Ф.П. Численные методы решения экстремальных задач: Учебное пособие для вузов - 2-е изд., перераб. и доп. -М.: Наука, Гл. ред. физ.-мат. лит, 1988. -550 с.

12. Васильев Ф.П. Методы решения экстремальных задач -М.: Наука, 1981. -400 с.

13. Марчук Г.И. Методы вычислительной математики. – М.: Наука, 1980. -536 с.

14. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. – М.: Наука, 1976. - 544 с.

15. Самарский А.А. Введение в численные методы. – 3-е изд., перераб. – М.: Наука, 1997. - 239 с.

16. Тихонов А.Н., Самарский А.А. Уравнения математической физики. – М.: Наука, 1972.

17. Шикин Е.В., Плис А.И. Кривые и поверхности на экране компьютера. Руководство по сплайнам для пользователей. – М.: Диалог-МИФИ, 1996 – 240 с.

18. Альберг Дж., Нильсон Э., Уолш Дж. Теория сплайнов и их приложения. М.: Наука, 1972.

19. Де Бор К. Практическое руководство по сплайнам. - М.: Наука, 1983.

20. Foley J.D., van Dam A., Feiner S.K., Hugues J.F. Computer graphics. Principles and practice. Addison-Wesley Pub. Com. 991.

21. Боглаев Ю.П. Вычислительная математика и программирование. М.: Высшая школа, 1990.

22. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. -М.: Физ.-мат. лит. 1967.

23. Хайрер Э., Нерсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи: Пер. с англ. - М.: Мир, 1990. 512 c.

24. Современные численные методы решения обыкновенных дифференциальных уравнений / Под ред. Дж. Холла, Дж. Уатта. М.: Мир, 1979. 312 c.

25. Деккер К., Вервер Я. Устойчивость методов Рунге-Кутты для жестких нелинейных дифференциальных уравнений.- М.: Мир, 1988. 332 c.

26. Олемской И. В. О численном методе интегрирования систем обыкновенных дифференциальных уравнений // Оптимальное управление в механических системах. Л., 1983. C.178-185.

27. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров: Учеб. пособие. – М.: Высш. Шк., 1994. – 544 с.

28. Латыпов И.И. Численные методы. Лабораторный практикум: Учебное пособие для студентов физико-математического факультета по основам численных методов. Книга 1.– Бирск: Бирск.гос.соц.-пед.акад., 2007. – 94 с.

Примечания

В работе также есть подробное решение

К работе прилагается все необходимое для сдачи (Формат: Word отчет с расчетами. Расчеты прилагаются (Excel)

Покупка готовой работы
Тема: «Численные методы (excel № 1. (БирГСПА)»
Раздел: Программирование, Базы данных
Тип: Лабораторная работа
Страниц: 12
Цена: 500 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы

У нас можно заказать

(Цены могут варьироваться от сложности и объема задания)

Контрольная на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 3 дней

Решение задач на заказ

Решение задач

от 100 руб.

срок: от 1 дня

Лабораторная работа на заказ

Лабораторная работа

от 200 руб.

срок: от 1 дня

Доклад на заказ

Доклад

от 300 руб.

срок: от 1 дня

682 автора

помогают студентам

42 задания

за последние сутки

10 минут

время отклика


Возможно Вас заинтересует