Курсовая работа

«Исследование сложной электрической цепи постоянного тока методом узловых потенциалов»

  • 12 страниц
Содержание

ИССЛЕДОВАНИЕ СЛОЖНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПОСТОЯННОГО ТОКА МЕТОДОМ УЗЛОВЫХ ПОТЕНЦИАЛОВ. 1

1. РАСЧЕТ УЗЛОВЫХ ПОТЕНЦИАЛОВ. 1

2. ПРОВЕРКА ЗАКОНОВ КИРХГОФА. 2

3. ПРОВЕРКА БАЛАНСА МОЩНОСТЕЙ В СХЕМЕ 3

4. МЕТОД ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА. 3

5. ПОСТРОЕНИЕ ПОТЕНЦИАЛЬНОЙ ДИАГРАММЫ ПО КОНТУРУ. 4

ИССЛЕДОВАНИЕ СЛОЖНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА МЕТОДОМ КОНТУРНЫХ ТОКОВ. 5

1. РАСЧЕТ ТОКОВ И НАПРЯЖЕНИЙ В СХЕМЕ, МЕТОДОМ КОНТУРНЫХ ТОКОВ. 6

2. ПРОВЕРКА БАЛАНСА МОЩНОСТЕЙ. 6

3. ПОСТРОЕНИЕ ВЕКТОРНОЙ ДИАГРАММЫ И ПРОВЕРКА 2ГО ЗАКОНА КИРХГОФА. 7

Введение

Исследование сложной электрической цепи постоянного тока методом узловых потенциалов.

R1=130 Ом

R2=150 Ом

R3=180 Oм

R4=110 Oм

R5=220 Oм

R6=75 Oм

R7=150 Oм

R8=75 Oм

R9=180 Oм

R10=220 Oм

E1=20 В

E4=5.6 В

E6=12 В

1. Расчет узловых потенциалов.

Заземляем 0й узел, и относительно него рассчитываем потенциалы остальных узлов.

Запишем матрицу проводимостей для этой цепи:

Y=

После подстановки значений:

Y=

Составляем матрицу узловых токов:

I=

По методу узловых потенциалов мы имеем уравнение в матричном виде:

Y – матрица проводимостей;

U – матрица узловых потенциалов;

I – матрица узловых токов.

Из этого уравнения выражаем U:

Y-1 – обратная матрица;

Решаем это уравнение, используя математическую среду Matlab: U=inv(Y)*I

inv(Y) – функция ищущая обратную матрицу.

U=

Зная узловые потенциалы, найдем токи в ветвях:

i1= = 0.0768; i2= = 0.0150; i3= = 0.0430;

i4= = 0.0167; i5= = 0.0454; i6= = 0.0569;

i7= = 4.2281105; i8= = 0.0340; i9= = 0.0288;

i10= = 0.0116

2. Проверка законов Кирхгофа.

Первый закон

для 0го узла : i4+i2i5i1=0

для 1го узла : i2+i6i3i9=0

для 2го узла : i3+i7i8i1=0

для 3го узла : i10i7i6i5=0

для 4го узла : i8+i4+i9i10=0

Второй закон

1й контур : i1R1+i2R2+i3R3=E1  20=20

2й контур : i2R2i6R6+i5R5=E6  12=12

3й контур : i4R4i8R8i3R3i2R2=E4  5.6=5.6

4й контур : i3R3+i8R8+i10R10+i6R6=E6  12=12

5й контур : i3R3i7R7+i6R6=E6  12=12

6й контур : i9R9i8R8i3R3=0  0=0

3. Проверка баланса мощностей в схеме

Подсчитаем мощность потребителей:

P1=i12R1+i22R2+i32R3+i42R4+i52R5+i62R6+i72R7+i82R8+i92R9+i102R10+E4i4= 2.2188

Сюда включёна мощность Е4 так как он тоже потребляет энергию.

Подсчитаем мощность источников:

P2=E1i1+E6i6=2,2188

P1P2=0

4. Метод эквивалентного генератора.

Рассчитаем ток в ветви с максимальной мощностью, методом эквивалентного генератора.

Сравнивая мощности ветвей видим, что максимальная мощность выделяется в первой ветви, поэтому уберём эту ветвь и для получившейся схемы рассчитаем Uxx и Rэк .

Расчёт Uxx методом узловых потенциалов:

Матрица проводимостей:

Фрагмент работы

3. Проверка баланса мощностей в схеме

Подсчитаем мощность потребителей:

P1=i12R1+i22R2+i32R3+i42R4+i52R5+i62R6+i72R7+i82R8+i92R9+i102R10+E4i4= 2.2188

Сюда включёна мощность Е4 так как он тоже потребляет энергию.

Подсчитаем мощность источников:

P2=E1i1+E6i6=2,2188

P1P2=0

4. Метод эквивалентного генератора.

Рассчитаем ток в ветви с максимальной мощностью, методом эквивалентного генератора.

Сравнивая мощности ветвей видим, что максимальная мощность выделяется в первой ветви, поэтому уберём эту ветвь и для получившейся схемы рассчитаем Uxx и Rэк .

Расчёт Uxx методом узловых потенциалов:

Матрица проводимостей:

Y=

Матрица узловых токов:

I=

По методу узловых потенциалов находим:

=

Но нас интересует только разность потенциалов между 0ым и 3им узлами: U30=Uxx =6.1597.

 I1= = =0.0686

Где эквивалентное сопротивление находится следующим образом:

∆123  123

054  ∆054 054  ∆054

024  ∆024

При переходе от   ∆ используется формулы преобразования: , а при переходе ∆  : , две остальные формулы и в том, и в другом случаях получаются путем круговой замены индексов.

Определим значение сопротивления, при котором будет выделяться максимальная мощность. Для этого запишем выражение мощности на этом сопротивлении: . Найдя производную этого выражения, и приравняв её к нулю, получим: R=Rэк, т.е. максимальная мощность выделяется при сопротивлении нагрузки равном внутреннему сопротивлению активного двухполюсника.

5. Построение потенциальной диаграммы по контуру.

По оси X откладывается сопротивление участка, по оси Y потенциал соответствующей точки.

Исследование сложной электрической цепи переменного тока методом контурных токов.

Переобозначим в соответствии с графом:

R1=110 Ом L5=50 млГ С4=0.5 мкФ

R2=200 Ом L6=30 млГ С3=0.25 мкФ

R3=150 Ом

R4=220 Ом E=15 В

R5=110 Ом =2f

R6=130 Ом f=900 Гц

1. Расчет токов и напряжений в схеме, методом контурных токов.

Матрица сопротивлений:

Z= =

=102

Матрица сумм ЭДС, действующих в ком контуре: Eк=

По методу контурных токов: Ix=Z1Eк=

Действующие значения: Ix=

Выражаем токи в ветвях дерева: I4=I1+I2= 0.0161+0.0025i I4=0.0163

I5=I1+I2+I3=0.02080.0073i  I5=0.0220

I6=I2+I3=0.00430.0079i I6=0.0090

Напряжения на элементах:

UR1=I1R1=1.8162 UL5=I5L5=6.2327 UC3=I3 =7.6881

UR2=I2R2=0.3883 UL6=I6L6=1.5259 UC4=I4 =5.7624

UR3=I3R3=1.6303

UR4=I4R4=3.5844

UR5=I5R5=2.4248

UR6=I6R6=1.1693

2. Проверка баланса мощностей.

Активная мощность:

P=I12R1+I22R2+I32R3+I42R4+I52R5+I62R6=0.1708

Реактивная мощность:

Q=I52L5+I62L6-I32 =0.0263

Полная мощность:

S= =0.1728

Заключение

Исследование сложной электрической цепи переменного тока методом контурных токов.

Переобозначим в соответствии с графом:

R1=110 Ом L5=50 млГ С4=0.5 мкФ

R2=200 Ом L6=30 млГ С3=0.25 мкФ

R3=150 Ом

R4=220 Ом E=15 В

R5=110 Ом =2f

R6=130 Ом f=900 Гц

1. Расчет токов и напряжений в схеме, методом контурных токов.

Матрица сопротивлений:

Z= =

=102

Матрица сумм ЭДС, действующих в ком контуре: Eк=

По методу контурных токов: Ix=Z1Eк=

Действующие значения: Ix=

Выражаем токи в ветвях дерева: I4=I1+I2= 0.0161+0.0025i I4=0.0163

I5=I1+I2+I3=0.02080.0073i  I5=0.0220

I6=I2+I3=0.00430.0079i I6=0.0090

Напряжения на элементах:

UR1=I1R1=1.8162 UL5=I5L5=6.2327 UC3=I3 =7.6881

UR2=I2R2=0.3883 UL6=I6L6=1.5259 UC4=I4 =5.7624

UR3=I3R3=1.6303

UR4=I4R4=3.5844

UR5=I5R5=2.4248

UR6=I6R6=1.1693

2. Проверка баланса мощностей.

Активная мощность:

P=I12R1+I22R2+I32R3+I42R4+I52R5+I62R6=0.1708

Реактивная мощность:

Q=I52L5+I62L6-I32 =0.0263

Полная мощность:

S= =0.1728

С другой стороны:

Активная мощность источника:

P=EI4cos(arctg )=0.1708

Реактивная мощность источника:

Q=EI4sin(arctg )=0.0265

Полная мощность источника:

S=EI4=0.1728

3. Построение векторной диаграммы и проверка 2го закона Кирхгофа.

Для 1го контура:

I1R1+I4R4+I4 +I5R5+I5282.7433iE=0.00880.0559i

Для 2го контура:

I2R2+I4R4+I4 +I5282.7433i+I5R5+I6169.6460i+I6R6=0.0088 0.0559i

Для 3го контура:

I5R5+I6169.6460i+I6R6+I3 +I3R3+I5282.7433i=0.06800.0323i

Векторная диаграмма:

Примечания

В работе также есть подробное решение задач

Покупка готовой работы
Тема: «Исследование сложной электрической цепи постоянного тока методом узловых потенциалов»
Раздел: Физика
Тип: Курсовая работа
Страниц: 12
Цена: 500 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы

У нас можно заказать

(Цены могут варьироваться от сложности и объема задания)

Контрольная на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 3 дней

Решение задач на заказ

Решение задач

от 100 руб.

срок: от 1 дня

Лабораторная работа на заказ

Лабораторная работа

от 200 руб.

срок: от 1 дня

Доклад на заказ

Доклад

от 300 руб.

срок: от 1 дня

682 автора

помогают студентам

42 задания

за последние сутки

10 минут

время отклика