СтудСфера.Ру - помогаем студентам в учёбе

У нас можно недорого заказать курсовую, контрольную, реферат или диплом

Спроектировать и обосновать возможность изготовления детали изолятора РПС-1  из пресс-материалов - Дипломная работа №26411

«Спроектировать и обосновать возможность изготовления детали изолятора РПС-1 из пресс-материалов» - Дипломная работа

  • 45 страниц(ы)

Содержание

Введение

Выдержка из текста работы

Заключение

Список литературы

фото автора

Автор: Pingvin78

Содержание

Введение

1. Технико-экономическое обоснование и выбор метода производства изделия ….

2. Влияние технологических и конструктивных факторов на качество продукции …

3. Технологическая часть

3.1 Характеристика сырья

3.1.1 Характеристика для пресс-материала АГ-4В….

3.1.2 Характеристика для пресс-материала ДСВ-2-Л….

3.2 Характеристика готовой продукции

3.2.1 Общие технические требования….

3.2.2 Требования к внешнему виду….

3.3 Материальный расчет производства ….

3.4 Разработка и описание технологической схемы ….

3.5 Расчет технологических параметров

3.5.1 Расчет для изолятора 2РТТ

3.5.1.1 Исходные данные….

3.5.1.2 Температура прессования…

3.5.1.3 Навеска материала…

3.5.1.4 Время выдержки материала в пресс-форме….

3.5.1.5 Удельное давление прессования….

3.5.2 Расчет для изолятора РПС – 1

3.5.2.1 Исходные данные….

3.5.2.2 Температура прессования…

3.5.2.3 Навеска материала…

3.5.2.4 Время выдержки материала в пресс-форме….

3.5.2.5 Удельное давление прессования…

3.6 Выбор и расчет основного и вспомогательного оборудования

3.6.1 Выбор гидравлического пресса ….

3.6.2 Расчет количества оборудования

3.6.2.1 Расчет нормы штучного времени….

3.6.2.2 Расчет основного (технологического) времени…

3.6.2.3 Расчет вспомогательного неперекрываемого

времени….

3.6.2.4 Расчет количества гидравлических прессов….

3.6.3 Выбор и расчет вспомогательного оборудования

3.6.3.1 Выбор и расчет таблетмашины….

3.6.3.2 Расчет количества станков для механической

обработки….

3.6.3.3 Определение количества транспортного

оборудования….

3.6.3.4 Выбор оборудования для термообработки….

3.7 Нормы обслуживания оборудования….

3.8 Разработка конструкции и описание технологической

оснастки

3.8.1 Описание устройства и принципа действия .….

3.9 Контроль производства

3.9.1 Контроль готовой продукции…

3.9.2 Причины появления дефектов изделий и методы

их устранения…

4. Основы автоматического контроля

4.1 Анализ технологического процесса с точки зрения

автоматизации….

4.2 Функциональная схема автоматизации….

5. Безопасность и экологичность проекта

5.1 Общая характеристика работы….

5.2 Характеристика применяемых веществ….

5.3 Характеристика производства….

5.4 Безопасность ведения работы….

5.5 Средства индивидуальной защиты….

5.6 Метеорологические условия….

5.7 Отопление и вентиляция производственных помещений….

5.8 Освещение….

5.9 Защита от шума и вибрации….

5.10 Электробезопасность….

5.11 Защита от статического электричества.….

5.12 Молниезащита….

5.13 Пожарная профилактика и средства пожаротушения….

5.14 Экологичность работы….

6. Технико–экономическое обоснование проекта

6.1 Характеристика предприятия….

6.2 Описание продукции….

6.3 Анализ рынка сбыта и основных конкурентов….

6.4 Экономические расчеты

6.4.1 Расчет основных фондов и амортизационных

отчислений….

6.4.2 Расчет капитальных затрат на оборудование….

6.4.3 Расчет оборотных средств и капитальных вложений….

6.5 Расчет численности работников по категориям и оплаты труда работающих

6.5.1 Расчет численности производственных рабочих….

6.5.2 Расчет фонда зарплаты основных рабочих….

6.5.3 Доплаты к тарифному фонду зарплаты…

6.5.4 Расчет фонда зарплаты вспомогательных рабочих.….

6.5.5 Расчет фонда зарплаты ИТР и служащих….

6.6 Расчет себестоимости продукции

6.6.1 Расчет норм расхода сырья и основных материалов….

6.6.2 Топливо и энергия на технологические цели….

6.6.3 Проектная калькуляция себестоимости продукции….

6.7 Расчет экономической эффективности проектируемого

производства….

6.8 Выводы к проекту….

Список литературы ….

Перечень нормативно-технической документации и ГОСТов…

Приложения….

П.1. Спецификация

П.2. Чертеж изделия


Введение

За последние двадцать лет наблюдается громадный рост потребления полимерных материалов. Синтетические полимеры по своему значению приблизились к таким природным материалам, как каучук, хлопок и шелк, которые служили человечеству в течение многих тысячелетий, продолжая играть существенную роль и сейчас. Перспективы применения синтетических материалов все время расширяются. В последнее десятилетие технологические процессы и перерабатывающее оборудование были существенно усовершенствованы.

Развитие методов переработки пластмасс неразрывно связано с особенностями полимерных материалов. Высокие прочностные характеристики позволяют применять пластмассы в ряде отраслей машиностроения.

Большим преимуществом пластмасс является относительно легкое получение изделий различной величины и различной конфигурации без механической обработки. Это приводит к понижению количества отходов, а значит, значительно сокращает трудовые и материальные ресурсы.

Технология переработки полимеров – это область науки и техники, изучающая процессы, предназначенные для получения изделий из пластических масс или улучшения свойств полимеров. Изготовление изделий из пластмасс – сравнительно сложный технологический процесс, базирующийся на использовании физико-химических и др. закономерностей. В зависимости от условий формования (температуры расплава, скорости течения, давления и времени охлаждения) изменяется степень кристалличности и физико-механические свойства полимеров, поэтому выбор и обоснование этих параметров имеют принципиальное значение.[1, с.6]

Технология переработки начала развиваться как самостоятельная область науки после завершения целого ряда фундаментальных исследований по физике и механике полимеров. Особое значение развитие теоретических основ переработки полимеров приобретает в настоящее время в связи с появлением быстро действующей компьютерной техники. Переработка пластмасс в изделия – трудоемкий процесс и чтобы в ближайшие годы обеспечить резкое повышение выпуска изделий из пластмасс без увеличения численности занятых в этой отрасли рабочих, необходимо разрабатывать принципиально новые технологические процессы, автоматические линии и переводить их на управление с использованием ЭВМ. Перевод технологии на автоматизированное управление (АСУТП) потребует создания математических моделей, учитывающих весь комплекс протекающих физико-химических процессов. [1, с. 6]

Процесс переработки полимерного материала всегда сопровождается его пластической деформацией, которой могут сопутствовать химические реакции и в ряде случаев необратимое изменение физических свойств, приводящее к возникновению принципиального отличия между характеристиками исходного материала и характеристиками готового изделия (отверждение термореактивных материалов, вулканизация резин, ориентация волокна и т. д.). [2, с. 6]

В области переработки полимеров можно выделить четыре основных направления:

1. Приготовление различных композиций, обладающих свойствами, отличными от свойств основного полимера.

Введение в основной полимер различных ингредиентов, улучшающих его эксплуатационные или технологические свойства, практиковалось с самого начала промышленного использования полимеров. (В качестве примера можно сослаться на Гудьира, который, введя в натуральный каучук серу, открыл вулканизацию и положил начало возникновению резиновой промышленности). В настоящее время создание композиции – это целая отрасль промышленности переработки полимеров. Введение стабилизаторов, пластификаторов, антистарителей, наполнителей, красителей и др. стало неотъемлемой частью процесса производства полимерных материалов.

2. Изготовление изделий из термопластичных материалов, свойства которых в основном тождественны свойствам изделия.

В этом случае процесс переработки в первом приближении можно представить состоящим из следующих основных этапов: а) плавление материала; б) пластическая деформация материала, в результате которой бесформенной массе придается конфигурация будущего изделия; в) охлаждение материала до температуры теплостойкости, при которой он может сохранять приданную ему форму. В ряде случаев процессу формования сопутствуют процессы механической ориентации, обеспечивающей улучшение прочностных характеристик материала.

3. Изготовление изделий из термореактивных материалов (термореактивные пластмассы, резиновые смеси), окончательное формирование химической структуры которых происходит на последней стадии процесса переработки, состоящего в этом случае из следующих этапов: а) нагрев материала до перехода в вязкопластичное состояние; б) пластическая деформация материала, в процессе которой в материал вводят необходимые дополнительные ингредиенты (в ряде случаев нагрев до нужной температуры осуществляется за счет тепла, выделяющегося вследствие вязкого трения; полученную в процессе смешения композицию вновь подвергают пластической деформации и придают ей форму готового изделия; в) нагрев готового изделия до температуры отверждения (или вулканизации), при которой в материале протекают химические реакции, обеспечивающие образование непрерывной пространственной структуры.

4. Изготовление изделий непосредственно из мономеров – разновидность процесса переработки, при котором реакции полимеризации протекают непосредственно в форме и процесс образования полимера совмещается с процессом формования готового изделия. В настоящее время в промышленности переработки полимеров особенно широко представлены первые три направления. Вследствие этого наиболее глубоко разработаны соответствующие технологические процессы и методы их теоретического описания. [2, с.6]


Выдержка из текста работы

В первый момент прессования (включая замыкание пресс-формы) материал, нагреваясь от стенок пресс-формы, становится мягким, пластичным (благодаря расплавлению связующего - смолы), приобретает способность заполнять оформляющую полость пресс-формы под действием давления. В дальнейшем, в период технологической выдержки, под действием тепла материал затвердевает вследствие перехода смолы в неплавкое и нерастворимое состояние.

Температура прессования влияет на скорость замыкания пресс-формы и на длительность технологической выдержки и вместе с тем она зависит от свойств и состояния исходного материала, а также от конфигурации прессуемой детали.

Чем выше температура прессования, тем быстрее должно производиться замыкание пресс-формы и тем короче будет технологическая выдержка. Однако повышенная температура прессования при малой начальной текучести исходного материала может вызывать преждевременное отверждение его при замыкании пресс-формы и, следовательно, недопрессовку.

Высокая температура прессования деталей из прессовочных материалов, содержащих значительное количество летучих (например, аминопласт), может привести к вздутиям. С другой стороны, можно повысить температуру прессования в случае предварительного подогрева материала перед загрузкой его в пресс-форму. Для деталей, оформление которых требует большой пластичности исходного пресс-материала, или массивных деталей, температура прессования должна быть более низкой, чем для деталей простой конфигурации и тонкостенных.


Заключение

Термическая обработка отпрессованных деталей заключается в дополнительном нагревании их при той или иной температуре в течение определенного времени. Термообработка деталей производится в воздушных термостатах (или среде инертного газа) и, иногда, для снижения влагопоглощаемости и коэффициента трения (колеса зубчатых передач, подшипники скольжения и др.) в масляных ваннах. Во избежание коробления сложных деталей при термической обработке их следует закреплять в специальных приспособлениях или на оправках.

В некоторых случаях термообработку можно производить не вынимая детали из пресс-формы в продолжение технологической выдержки при прессовании.

Дополнительная термообработка отпрессованных деталей производится с целью доотверждения материала, снятия внутренних напряжений, некоторой стабилизации размеров в условиях эксплуатации и, главным образом, для повышения их жесткости и для улучшения электроизоляционных характеристик при повышенных температурах эксплуатации.

При дополнительной термообработке могут ухудшаться; их отдельные прочностные характеристики и изменяться размеры


Список литературы

1. Бортников В.Г. Производство изделий из пластических масс: учебное пособие для вузов в 3-х томах. Том 2. Технология переработки пластических масс. Казань : изд. «Дом печати», 2002, 399с.

2. Торнер Р. В. Основные процессы переработки полимеров (теория и методы расчета). М.: Химия, 1972. – 456 с.

3.Проектирование производств изделий из пластмасс: Учебное пособие / Ю. В. Перухин, В. В. Курносов, Ю. Е. Овчинникова, С. С. Ахтямова, В. В. Кузьмин, Р. Я. Дебердеев. – Казань: Казан. гос. технол. ун-т, 2004. – 164 с.

4. Г.И. Назаров, В.В. Сушкин, Л.В.Дмитриевская. Конструкционные пластмассы. М., «Машиностроение», 1973, 192с.

5. Гиль А.П. Нормы времени и расхода сырья в производствах получения изделий из реактопластов прессованием: Метод.указания /Казан.хим.-технол.инст., Казань, 1991, 56с.

6. Оборудование для переработки пластмасс. Справ.пособие. Под ред. В.К. Завгороднего. М., «Машиностроение», 1976, 408с.

7. Руководящий технический материал РТМ 1.2.001-76. Разработка технологии и режимов изготовления деталей из термореактивных прессовочных материалов, 1989, 75с.

8. Г.И. Назаров, В.В. Сушкин, Л.В.Дмитриевская Конструкционные пластмассы. М., «Машиностроение», 1973, 192с.

9. Технологический процесс прессования: операционные карты (материалы h**t://w*w.engineer-oht.r*/)


Тема: «Спроектировать и обосновать возможность изготовления детали изолятора РПС-1 из пресс-материалов»
Раздел: Технология
Тип: Дипломная работа
Страниц: 45
Цена: 400 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы
Похожие материалы
  • Дипломная работа:

    Разработка мероприятий по снижению себестоимости изготовления детали «ствол» в цехе №254 открытое акционерное общество воткинский завод

    92 страниц(ы) 

    ВВЕДЕНИЕ 4
    1 АНАЛИЗ ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ ЦЕХА № 254
    1.1 Описание деятельности цеха № 254
    1.1.1 История создания ОАО «Воткинский завод» 7
    1.1.2 Описание цеха № 254 9
    1.1.3 Структура управления цеха №254 11
    1.2 Оценка внешней среды цеха № 254 22
    1.3 Анализ деятельности ОАО «Воткинский завод»
    1.3.1 Основные показатели работы цеха № 254 24
    1.3.2 Анализ оплаты труда в цехе № 254 28
    1.3.3 Анализ основных фондов 30
    1.3.4 Затраты цеха № 254 33
    1.4 Назначение и конструкция детали «Ствол» 34
    1.4.1 Описание технологического процесса 35
    1.4.2 Проблемы цеха 254 при изготовлении детали «Ствол» 35
    2 АНАЛИЗ СЕБЕСТОИМОСТИ ДЕТАЛИ «СТВОЛ»
    2.1 Теоретические основы снижения себестоимости 37
    2.2 Себестоимость изделия 41
    2.3 Структура себестоимости 47
    3 РАЗРАБОТКА МЕРОПРИЯТИЙ ПО СНИЖЕНИЮ СЕБЕСТОИМОСТИ
    3.1 Определение способов снижения себестоимости
    3.1.1 Замена заготовки 49
    3.1.2 Экономическое обоснование выбора метода получения
    заготовок 53
    3.1.3 Замена оборудования 58
    3.2 Расчет экономии от внедрения мероприятий
    3.2.1 Расчет экономии от замены заготовки 61
    3.2.2 Определение экономической эффективности двух вариантов технологического процесса механической обработки детали «Ствол» 67
    4 ОХРАНА ТРУДА
    4.1 Общие требования охраны труда 72
    4.2 Требования по применению и использованию лестниц 79
    4.3 Требования охраны груза перед началом работы 83
    4.4 Требования охраны труда во время работы 85
    4.5 Требования охраны труда в аварийных ситуациях 86
    4.6 Требовании охраны труда по окончании работы 87
    ЗАКЛЮЧЕНИЕ 88
    СПИСОК ИСПОЛЬЗОВАНОЙ ЛИТЕРАТУРЫ 90
  • Курсовая работа:

    Проектирование маршрутно-операционного технологического процесса изготовления детали

    11 страниц(ы) 

    Введение 2
    1. Маршрутно-операционный технологический процесс изготовления детали 3
    2. Операционный эскиз токарной операции на токарном станке с ЧПУ 6
    3. Аналитический расчет режимов резания на чистовой переход 7
    Заключение 10
    Список используемой литературы 11
  • Реферат:

    Взаимодействие семьи и ДОО при подготовке детей к школе

    26 страниц(ы) 

    Введение….3
    1. Обзор литературы по проблеме взаимодействия семьи и ДОО при подготовке детей к школе….5
    1.1.Сущность взаимодействия дошкольного образовательного учреждения с семьей…5
    1.2. Формы взаимодействия ДОО с семьей для формирования социально-психологической готовности детей дошкольного возраста к школьному обучению….8
    2. Анализ результатов эмпирических исследований современных педагогов-практиков ….14
    3. Педагогические условия взаимодействия дошкольного образовательного учреждения и семьи в формировании готовности детей к обучению в школе.18 Заключение ….22
    Список использованной литературы….24
  • Дипломная работа:

    Особенности развития диалогической и монологической речи у детей старшего дошкольного возраста

    63 страниц(ы) 

    ВВЕДЕНИЕ 3
    1.1. Связная речь как объект исследования в науке 6
    1.2. Развитие диалогической и монологической речи в онтогенезе 15
    1.3. Особенности развития диалогической и монологической речи у детей с общим недоразвитием речи 21
    Выводы по главе 1 34
    Глава 2. ОРГАНИЗАЦИЯ И РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ДИАЛОГИЧЕСКОЙ И МОНОЛОГИЧЕСКОЙ РЕЧИ ДОШКОЛЬНИКОВ С ОБЩИМ НЕДОРАЗВИТИЕМ РЕЧИ (III УРОВЕНЬ) 35
    2.1. Методики исследования 35
    2.2. Анализ результатов исследования связной монологической и диалогической речи у старших дошкольников с ОНР 39
    ЗАКЛЮЧЕНИЕ 48
    СПИСОК ЛИТЕРАТУРЫ 50
    ПРИЛОЖЕНИЯ 53
  • Дипломная работа:

    Совершенствование технологического процесса механической обработки детали "Корпус подшипника"

    94 страниц(ы) 

    ВВЕДЕНИЕ …. 6
    1. АНАЛИЗ ИСХОДНЫХ ДАННЫХ ….… 8
    1.1 Основные источники исходных данных ….… 8
    1.2 Служебное назначение и технические характеристики детали …. 9
    1.3 Анализ технологичности конструкции детали ….…. 11
    1.4 Анализ существующего технологического процесса изготовления детали . 14 1.5 Определение типа производства ….…. 16
    2. РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ОБРАБОТКИ
    ДЕТАЛИ В НОВЫХ УСЛОВИЯХ ПРОИЗВОДСТВА ….… 20
    2.1 Выбор заготовки и методов её получения …. 20
    2.2 Выбор технологических баз ….…. 25
    2.3 Выбор методов обработки поверхностей ….…. 27
    2.4 Разработка технологического маршрута обработки корпуса ….…. 28
    2.5 Выбор технологического обеспечения ….… 30
    3 РАЗРАБОТКА ТЕХНОЛОГИЧЕСКИХ ОПЕРАЦИЙ ….…. 35
    3.1 Расчёт припусков ….…. 35
    3.2 Расчёт точности обработки ….…. 40
    3.3 Расчёт технологических размерных цепей … 43
    3.4 Расчёт режимов резания ….…. 45
    3.5 Расчёт норм времени ….…. 51
    4 КОНСТРУКТОРСКАЯ ЧАСТЬ ….… 56
    4.1 Расчёт и проектирование приспособления для фрезерной операции ….…. 56
    5 ПРОГРАММИРОВАНИЕ ОБРАБОТКИ ДЕТАЛИ ….… 59
    5.1 Система программирования ….…. 59
    5.2. Алгоритм обработки выбранной поверхности на станке с ЧПУ ….…. 62
    6 ОБОСНОВАНИЕ ЭКОНОМИЧЕСКОЙ ЦЕЛЕСООБРАЗНОСТИ ….…. 65
    6.1 Расчёт потребного количества оборудования ….…. 65
    6.2 Определение количества работающих ….… 67
    6.3 Расчёт технологической себестоимости детали ….…. 68
    6.4 Определение годовой экономии от изменения техпроцесса …. 72 7 ОБОСНОВАНИЕ ЭКОЛОГИЧЕСКОЙ ЦЕЛЕСООБРАЗНОСТИ ….… 73
    8 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА….….
    ЗАКЛЮЧЕНИЕ ….….
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ ….…
    ПРИЛОЖЕНИЯ ….…
  • Курсовая работа:

    Технологические процессы изготовления деталей машин

    40 страниц(ы) 

    ВВЕДЕНИЕ 3
    1 ОПИСАНИЕ ПРОЕКТИРУЕМОЙ ДЕТАЛИ «ТАРЕЛКА» 6
    1.1 Назначение и техническая характеристика проектируемой детали «Тарелка» 6
    1.2 Характеристика свойств и химического состава материала детали «Тарелка» 6
    1.3 Отработка конструкции детали «Тарелка» на технологичность 8
    2 ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ИЗГОТОВЛЕНИЯ ДЕТАЛИ «ТАРЕЛКА» 9
    2.1 Определение типа производства и его краткая характеристика 9
    2.2 Расчет параметров двух способов получения заготовки 10
    2.3 Технико-экономический выбор способа получения заготовки 14
    2.4 Разработка технологического процесса изготовления детали «Тарелка» 15
    2.5 Определение припусков на одну поверхность заготовки табличным методом 17
    2.6 Краткая характеристика применяемого металлорежущего оборудования 19
    2.7 Расчет режимов резания и технической нормы времени аналитическим методом для одной операции 20
    2.8 Выбор режимов резания и технической нормы времени для операции с ЧПУ по нормативам 24
    3 КОНСТРУИРОВАНИЕ РЕЗЦА ТОКАРНОГО ПРОХОДНОГО ОТОГНУТОГО 36
    3.1 Назначение и описание конструкции проектируемого инструмента 36
    3.2 Расчет и выбор конструктивных и геометрических параметров проектируемого инструмента 36
    ЗАКЛЮЧЕНИЕ 40
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 41
Другие работы автора
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 4 Теплопередача

    1 страниц(ы) 

    4.1. Во сколько раз увеличится термическое сопротивление стенки стального змеевика, свернутого из трубы диаметром 38х2,5 мм, если покрыть ее слоем эмали толщиной 0,5 мм? Считать стенку плоской. Коэффициент теплопроводности эмали 1,05 Вт/(м.К).
    4.2. Паропровод длиной 40 м, диаметром 51x2,5 мм покрыт слоем изоляции толщиной 30 мм; температура наружной поверхности изоляции t=45°С, внутренней tг = 175°С. Определить количество теплоты, теряемое паропроводом в 1 ч. Коэффициент теплопроводности изоляции λ = 0,116 Вт/(м-К).
    4.3. Стальная труба диаметром 60x3 мм изолирована слоем пробки толщиной 30 мм и сверху еще слоем совелита (85 % магнезии + 15% асбеста) толщиной 40мм. Температура стенки трубы -110°С, а наружной поверхности изоляции 10 °С. Вычислить часовую потерю холода с 1 м длины трубы.
    4.4. Как изменится потеря холода в условиях предыдущей задачи, если внутренний слой сделать совелитовым (б = 40 мм), а наружный - пробковым (δ = 30 мм)?
    4.5. Найти температуру внутренней поверхности обмуровки аппарата (рис. 4.19), если температура на наружной поверхности ее 35 °С. Толщина обмуровки 260 мм. Термометр, заделанный на глубину 50 мм от наружной поверхности, показывает температуру 70 °С.
    4.6. Вычислить коэффициент теплопроводности для: а) жидкого хлороформа при t = 20 °С; б) сернистого газа при t = 160 °С и абсолютном давлении 1 кгс/сма (~0,1 МПа); в) 25% водного раствора хлористого кальция при t= 30 °С.
    4.7. Необходимо испарять 1600 кг/ч жидкости, кипящей при t= 137°С и поступающей в испаритель при этой температуре. Удельная теплота испарения жидкости r = 377•108 Дж/кг. Температура греющего пара должна быть не ниже 150 °С. Определить расход греющего пара: а) сухого насыщенного, риаб = 4 кгс/сма (~0,4 МПа); б) перегретого до 250 °С, ризб = 4 кгс/см2 (~0,4 МПа); в) перегретого до 250°С, риаб = 3 кгс/смя (~0,3 МПа). Удельная теплоемкость перегретого пара 2,14-103 Дж/(кг-К).
    Изобразить процессы изменения состояния греющего пара на диаграмме Т - S. Конденсат греющего пара отводится при температуре конденсации.
    4.8. До какой температуры будут нагреты глухим паром 2 т раствора хлористого кальция, если расход греющего пара (ра6с = 2 кгс/сма, т. е. ~0,2 МПа) за 2,5 ч составил 200 кг, а расход теплоты на нагрев аппарата и потери теплоты в окружающую среду составляют в среднем 2030 Вт? Начальная температура раствора 10 °С. Удельная теплоемкость раствора 2,5 х 103 Дж/(кг К).
    4.9. Определить количество передаваемой теплоты в противоточном конденсаторе, в котором конденсируется 850 кг/ч пара сероуглерода под атмосферным давлением. Пар сероуглерода поступает в конденсатор с температурой 90 °С. Жидкий сероуглерод выхолит из конденсатора при температуре на в °С ниже температуры конденсации. Удельная теплоемкость пара сероуглерода 0,67.103 Дж/(кг-К).
    4.10. В кожухотрубчатый конденсатор поступает 120 кг/ч сухого насыщенного пара диоксида углерода под давлением Рабе = 60 кгс/см2 (~6,0 МПа). Жидкий диоксид углерода выходит из конденсатора под тем же давлением при температуре конденсации. Принимая разность температур диоксида углерода и воды на выходе воды из конденсатора 5 К, определить необходимый расход воды, если она поступает в конденсатор с температурой 10 °С.
    4.11. Колонна для ректификации жидкого воздуха покрыта слоем тепловой изоляции из шлаковой ваты толщиной 250 мм. Температура жидкости внутри колонны -190 °С, температура воздуха в помещении 20 °С. Какое количество теплоты может проникать из окружающего воздуха в колонну через 1 ма поверхности, если пренебречь термическими сопротивлениями со стороны жидкости, окружающего воздуха и металлической стенки колонны?
    4.12. Как изменится коэффициент теплопередачи в аппарате, если заменить стальные трубы диаметром 38x2,5 мм на медные такого же размера: а) в паровом калорифере для воздуха, в котором aвозд = 41 Вт/(м8.К), агр. пара = 11600 Вт/(м2-К); б) в выпарном аппарате, в котором араств = 2320 Вт/(ма-К), агр. пара = 11600 Вт/(мг-К)? Загрязнений поверхности не учитывать.
  • Курсовая работа:

    Проектирование тестоделительной машины ХДФ-М

    27 страниц(ы) 

    Введение
    1. Механический расчет
    2. Кинематическая схема аппарата
    3. Кинематический расчет
    4. Расчет вала
    5. Выбор подшипников
    6. Область применения
    7. Спецификация
    8. Принцип работы
    Список используемых источников
  • Курсовая работа:

    Регенерация кислотных смесей и концентрирования слабой азотной кислоты

    78 страниц(ы) 

    ВВЕДЕНИЕ
    1. Аналитическая часть
    2. Расчетно-технологическая часть
    2.1. Описание технологической схемы
    2.2. Стандартизация. Технологическая характеристика сырья
    2.3 Свойства готовых продуктов, сырья и полуфабрикатов.
    2.4. Химизм основных и побочных реакций
    2.5. Расчет материального баланса отделения концентрирования HNO3
    2.6. Расчет теплового баланса
    3. Технико-технологическая часть
    3.1. Выбор и расчет производительности основного и вспомогательного оборудования технологической схемы
    3.2 Расчет количества аппаратов
    4. Выбор и обоснование схемы автоматизации производственного процесса
    5. Безопасность и экологичность проекта.
    6. Строительно-монтажная схема здания цеха и компоновка оборудования
    Заключение
    Список использованных источников

  • Курсовая работа:

    Спроектировать и экономически обосновать производство раствора йода спиртового 5 %

    58 страниц(ы) 

    Реферат …
    Перечень сокращений и условных обозначений …
    Введение…
    1 Аналитическая часть
    1.1 Историческая справка о методах получения и использования продукта
    1.2 Выбор и обоснование метода производства. Химизм процесса…
    2. Расчётно-технологическая часть
    2.1 Описание технологической схемы узла алкилирования бензола пропиленом
    в присутствии катализатора трёххлористого алюминия…
    2.2 Техническая характеристика сырья, полуфабрикатов и продуктов…
    2.3 Материальный баланс производства…
    2.4 Выбор и технологический расчёт основного и вспомогательного оборудования…
    2.5 Тепловой расчёт….
    2.6 Механический расчёт оборудования….….
    2.7 Внесенные изменения по сравнению с аналогом и обоснование изменений вводимых в проект.…
    3 Экологичность проекта…
    Заключение…
    Список литературы…
    Спецификация….
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 9 Адсорбция

    1 страниц(ы) 

    9.1. Определить количество загружаемого активного угля, диаметр адсорбера и продолжительность периода поглощения 100 кг паров октана из смеси с воздухом при следующих данных: начальная концентрация паров октана С0 =0,012 кг/м3, скорость w = 20 м/мин, активность угля по бензолу 7%, насыпная плотность угля рнас = 350 кг/м3, высота слоя угля в адсорбере Н = 0,8 м.
  • Курсовая работа:

    Расчет и подбор машины взбивальной

    23 страниц(ы) 

    Введение 4
    Литературный обзор 5
    Часть 1 Описание группы оборудования 5
    1.1 Классификация технологических машин 6
    Часть 2 Описание конкретной группы овощерезательных машин 9
    2.1 Взбивальная машина МВ-35М 10
    Часть 3 Описание принципа работы 17
    3.1 Описание принципа действия машины МВ-35 17
    3.2 Правила эксплуатации и техники безопасности 20
    3.3 Расчет машины взбивальной МВ-35 20
    Заключение 22
    Список литературы 23
  • Дипломная работа:

    Разработка вихревых контактных устройств. Процесс разделения отработанных кислотных смесей и концентрирования слабой HNO3

    101 страниц(ы) 

    ВВЕДЕНИЕ 3
    1. АНАЛИТИЧЕСКАЯ ЧАСТЬ 4
    1.1. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ВЫБРАННОГО МЕТОДА ПРОИЗВОДСТВА 4
    1.2 ПАТЕНТНАЯ ЧАСТЬ 8
    1.3 ВЫБОР И ОБОСНОВАНИЕ РАЙОНА СТРОИТЕЛЬСТВА 13
    Географические и климатические данные региона. 14
    2. РАСЧЕТНО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 15
    2.1. ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ 15
    2.2 ПРИНЦИП РАБОТЫ КОЛОННЫ КОНЦЕНТРИРОВАНИЯ H2SO4 18
    2.3. СТАНДАРТИЗАЦИЯ. ТЕХНОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА СЫРЬЯ, ПОЛУФАБРИКАТОВ, ГОТОВОГО ПРОДУКТА. ГОСТ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ. 20
    Свойства готовых продуктов, сырья и полуфабрикатов. 22
    2.4. ХИМИЗМ ОСНОВНЫХ И ПОБОЧНЫХ РЕАКЦИЙ [4] 23
    2.5 ИНЖЕНЕРНЫЕ РЕШЕНИЯ 27
    2.6. РАСЧЕТ МАТЕРИАЛЬНОГО БАЛАНСА ОТДЕЛЕНИЯ КОНЦЕНТРИРОВАНИЯ HNO3 [1] 27
    2.7. РАСЧЕТ ТЕПЛОВОГО БАЛАНСА [7] 33
    3. ТЕХНИКО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 44
    3.1. ВЫБОР И РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ ОСНОВНОГО И ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ 44
    3.2 РАСЧЕТ КОЛИЧЕСТВА АППАРАТОВ 45
    4. КОНСТРУКТИВНО-МЕХАНИЧЕСКИЕ РАСЧЕТЫ 46
    4.1 РАСЧЕТ ЧИСЛА СТУПЕНЕЙ КОНТАКТА ФАЗ КОНЦЕНТРАТОРА [5] 46
    1.2. ГИДРОДИНАМИЧЕСКИЙ РАСЧЕТ 50
    1.2.1. Расчет первой по ходу газового потока ступеней контакта фаз [5] 50
    4.2.2. Расчет гидродинамических характеристик второй и последующих по ходу газа ступеней вихревой колонны [5] 53
    4.3. МЕХАНИЧЕСКИЕ РАСЧЕТЫ ОСНОВНЫХ ДЕТАЛЕЙ И УЗЛОВ ВИХРЕВОЙ КОЛОННЫ [6], [7] 57
    5. ВЫБОР И ОБОСНОВАНИЕ СХЕМЫ АВТОМАТИЗАЦИИ ПРОИЗВОДСТВЕННОГО ПРОЦЕССА 62
    ОБЩИЕ СВЕДЕНИЯ О ТИПОВОЙ МИКРОПРОЦЕССОРНОЙ СИСТЕМЕ. 63
    ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ КИСЛОТ 64
    ОПИСАНИЕ КОНТУРОВ 66
    Регулирование уровня в напорном баке 66
    2 Регулирование температуры охлажденной кислоты по изменению подачи хладагента. 66
    Регулирование соотношения расходов при автоматизации топки 67
    4. Контур контроля давления 67
    5. Регулирование концентрации кислот 68
    9. ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТА 89
    Расчет нормируемых оборотных средств: 91
    Расчет численности и фонда заработной платы: 92
    Расчет фонда заработной платы основных производственных рабочих 93
    Расчет фонда З.П. вспомогательных рабочих (дежурный персонал) 95
    Расчет годового расхода электроэнергии (по проекту) 97
    Смета цеховых расходов 100
    Сравнительные технико-экономические показатели производства 102
    6. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА. 72
    АНАЛИЗ ПРОИЗВОДСТВА. 72
    ИНДИВИДУАЛЬНЫЕ СРЕДСТВА ЗАЩИТЫ 72
    ШУМ И ВИБРАЦИЯ 74
    ВЕНТИЛЯЦИЯ 75
    Расчет вентиляции 76
    МЕТЕОРОЛОГИЧЕСКИЕ УСЛОВИЯ 76
    ПОЖАРНАЯ ПРОФИЛАКТИКА 77
    ОСВЕЩЕНИЕ 79
    Расчет естественного освещения 79
    Расчет искусственного освещения. 80
    Электробезопасность 81
    Защитные меры в электрооборудовании 82
    Статическое электричество и молниезащита. 83
    Молниезащита 83
    Расчет молниезащиты 83
    БЕЗОПАСНОСТЬ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА. 85
    ЭКОЛОГИЧНОСТЬ ПРОЕКТА 85
    2.8 РАСЧЕТ МАТЕРИАЛЬНОГО БАЛАНСА КОНЦЕНТРИРОВАНИЯ H2SO4 39
    2.9. РАСЧЕТ ТЕПЛОВОГО БАЛАНСА ВИХРЕВОЙ КОЛОННЫ 40
    7. СТРОИТЕЛЬНО-МОНТАЖНАЯ СХЕМА ЗДАНИЯ ЦЕХА И КОМПОНОВКА ОБОРУДОВАНИЯ 86
    8. ГЕНЕРАЛЬНЫЙ ПЛАН. ПОЯСНЕНИЯ К СХЕМЕ ГЕНЕРАЛЬНОГО ПЛАНА. 88
    ЗАКЛЮЧЕНИЕ 103
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 104
    ПРИЛОЖЕНИЕ, СПЕЦИФИКАЦИЯ 106
  • Курсовая работа:

    Разработать и спроектировать скруббер для очистки отходящих газов аммиака и мела из сушилки.

    90 страниц(ы) 

    ВВЕДЕНИЕ
    1 АНАЛИТИЧЕСКАЯ ЧАСТЬ…
    1.1 Историческая справка…
    1.2 Выбор и обоснование метода производства…
    1.3 Характеристика сырья, полуфабрикатов и готовой продукции.
    2 РАСЧЕТНО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ….
    2.1 Описание технологической схемы производства азофоски….
    2.2 Внесенные изменения по сравнению с аналогом их обоснование ….
    2.3 Техническая характеристика сырья….
    3 РАСЧЕТ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ….
    3.1 Расчет материального баланса….
    3.2 Расчет вихревого контактного устройства нижней ступени….
    3.3. Расчет переливных устройств….
    3.4 Расчет штуцеров….
    3.5 Расчет теплового баланса….
    3.6 Механический расчет…
    3.7 Расчет фильтрующих элементов….
    4 ТЕХНИКО-ЭКОНИЧЕСКИЕ ПОКАЗАТЕЛИ….
    5 ТЕХНОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ….
    ЗАКЛЮЧЕНИЕ….
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ….
  • Курсовая работа:

    Проектирование рабочей лемешно-отвальной поверхности

    37 страниц(ы) 

    ВВЕДЕНИЕ 2
    1. ИСХОДНЫЕ ДАННЫЕ К ПРОЕКТИРОВАНИЮ 4
    2. ОБОСНОВАНИЕ ОСНОВНЫХ ПАРАМЕТРОВ ЛЕМЕШНО-ОТВАЛЬНОЙ ПОВЕРХНОСТИ 5
    3. ПРОЕКТИРОВАНИЕ РАБОЧЕЙ ПОВЕРХНОСТИ ПЛУГА 9
    3.1. Построение профиля борозды 10
    3.2 Построение фронтальной проекции рабочей поверхности (лобовой контур) 11
    3.3 Расчет параметров и построение направляющей кривой 13
    3.4 Расчет промежуточных значений углов у наклона образующих к стенке борозды 18
    3.5 Построение горизонтальной проекции лемешно-отвальной поверхности 22
    3.6 Построение сечений поверхности продольно и поперечно-вертикальными плоскостями 28
    3.7 Построение развертки отвала 30
    4 ВЫБОР ОСНОВНЫХ РАЗМЕРОВ ПЛУГА 31
    5 ПРИСОЕДИНЕНИЕ ПЛУГА К ТРАКТОРУ 32
    6 СИЛЫ, ДЕЙСТВУЮЩИЕ НА ПОЛУНАВЕСНОЙ ПЛУГ 33
    ЗАКЛЮЧЕНИЕ 35
    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 36
  • Задача/Задачи:

    ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 6 Абсорбция

    2 страниц(ы) 

    6.1. Смешаны два равных объема бензола и нитробензола. Считая, что объем жидкой смеси равен сумме объемов компонентов, определить плотность смеси, относительную массовую концентрацию X нитробензола и его объемную мольную концентрацию Сх.
    6.2. Состав жидкой смеси: хлороформа 20%, ацетона 40%, сероуглерода 40%. Проценты мольные. Определить плотность смеси, считая, что изменения объема при смешении не происходит.
    6.3. Воздух насыщен паром этилового спирта. Общее давление воздушно-паровой смеси 600 мм рт. ст., температура 60 °С. Принимая оба компонента смеси за идеальные газы, определить относительную массовую концентрацию V этилового спирта в смеси и плотность смеси.
    6.4. Газ состава: водород 26%, метан 60%, этилен 14% (проценты мольные) имеет давление ра6с = 30 кгс/см2 и температуру 20 °С. Считая компоненты смеси идеальными газами, определить их объемные массовые концентрации Сy (в кг/м3).
    6.5. Показать, что в формуле

    при любых значениях Мв и МА у не может быть отрицательным.
    6.6. В условиях примера 6.3 (а) определить движущую силу процесса массоперехода в начальный момент времени по газовой и по жидкой фазе в объемных концентрациях, мольных и массовых.
    6.7. Пар бинарной смеси хлороформ - бензол, содержащий 50% хлороформа и 50% бензола, вступает в контакт с жидкостью, содержащей 44% хлороформа и 56% бензола (проценты мольные). Давление атмосферное. Определить: а) из какой фазы в какую будут переходить хлороформ и бензол; б) движущую силу процесса массопередачи по паровой и по жидкой фазе на входе пара в жидкость (в мол. долях). Данные о равновесных составах см. в табл. ХLVII.