Реферат

«Галогенирование кислород- и азотсодержащих соединений»

  • 16 страниц(ы)
  • 2938 просмотров
  • 0 покупок
фото автора

Автор: roman

Введение 3

1. Общая характеристика процессов галогенирования 4

2. Техника безопасности в процессах галогенирования 9

3. Химия и теоретические основы процесса галогенирования 10

Список литературы 16

Производство органических веществ зародилось очень давно, но пер-воначально оно базировалось на переработке растительного или животного сырья – выделение ценных веществ (сахар, масла) или их расщепление (мыло, спирт и др.). Органический синтез, т. е. получение более сложных веществ из сравнительно простых, зародился в середине XIX века на осно-ве побочных продуктов коксования каменного угля, содержавших аромати-ческие соединения. Затем, уже в XX веке как источники органического сы-рья все большую роль стали играть нефть и природный газ, добыча, транс-порт и переработка которых более экономичны, чем для каменного угля. На этих трех видах ископаемого сырья главным образом и базируется про-мышленность органического синтеза. В процессах их физического разделе-ния, термического или каталитического расщепления (коксование, крекинг, пиролиз, риформинг, конверсия) получают пять групп исходных веществ для синтеза многих тысяч других соединений:

1. Парафины (от метана СН4 до углеводородов С15 – С40);

2. Олефины (С2Н4, С3Н6, С4Н8, С5Н10);

3. Ароматические углеводороды (бензол, толуол, ксилолы, нафталин);

4. Ацетилен;

5. Оксид углерода и синтез-газ (смесь СО и Н2).

В своем развитии промышленность органического синтеза разделилась на ряд отраслей (технология красителей, лекарственных веществ, пласти-ческих масс, химических волокон и др.), среди которых важное место зани-мает промышленность основного органического и нефтехимического синте-за. Термин «основной» (или «тяжелый») органический синтез охватывает производство многотонажных продуктов, служащих основой для всей ос-тальной органической технологии. В свою очередь, термин «нефтехимиче-ский» синтез появился в связи с преобразованием технологии органических веществ на нефтяное сырье и в обычном смысле слова (исключая получе-ние неорганических веществ и полимеров) охватывает первичную химиче-скую переработку углеводородов нефтяного происхождения. В этом плане он является частью основного органического синтеза, чем и обусловлено их объединенное начало.

1. Гидрогалогенирование спиртов

Гидрогалогенирование спиртов состоит в замещении OH-группы на атомы хлора или брома. Оно происходит при действии на спирты HCI (или HBr) по обратимой экзотермической реакции:

CH3OH + HX → CH3X + H2O

В случае третичных, вторичных и высших первичных спиртов реакцию можно проводить в жидкой фазе без катализаторов, смещая равновесие за счет отгонки воды или хлорпроизводного. Механизм реакции состоит в про-тонировании спирта и последующем нуклеофильном замещении группы +OH2:

+

ROH + HX ↔ ROH2 + X- → RX + H2O

Для низших первичных спиртов требуются катализаторы, играющие иногда и роль водоотнимающих средств, смещая равновесие вправо. Так, для получения этилбромида используют концентрированную серную кисло-ту, которая одновременно генерирует HBr из бромида натрия:

C2H5OH + NaBr + H2SO4 → C2H5Br + NaHSO4 + H2O

Для жидкофазных процессов иногда используют насыщенный раствор ZnCI2 в соляной кислоте, а для газовых – ZnCI2 на пористых носителях. Роль хлорида цинка как апротонной кислоты состоит в непосредственном активировании молекулы спирта:

O : ZnCI2

или в образовании сильной кислоты H2ZnCI4, протонирующей спирт.

Наиболее многотонажный продукт, получаемый гидрохлорированием спиртов, - хлорметан CH3CI. Его производят из безводного HCI и метанола в газовой фазе с гетерогенным катализатором (ZnCI2 на силикагеле или на пемзе) при 200 – 3500С, применяя для смещения равновесия 20 – 50% из-быток HCI. Реакцию проводят в трубчатом или адиабатическом реакторе с неподвижным слоем гетерогенного катализатора. Продукты реакции, со-стоящие из непревращенных реагентов, CH3CI, H2O и побочно образующе-гося диметилового эфира, охлаждают; при этом из них конденсируются со-ляная кислота и метанол. Последний отгоняют и возвращают на реакцию. Газообразную смесь очищают от метанола и HCI водой и щелочью. Затем хлорметан очищают от диметилового эфира концентрированной серной ки-слотой, нейтрализуют, сушат и конденсируют под давлением. Для синтеза хлорметана этот метод является преобладающим и более экономичным, чем хлорирование метана.

Кроме упоминавшегося этилбромида, а также метилбромида CH3Br гидрогалогенированием спиртов иногда получают некоторые высшие хло-ралканы и хлоргидрины многоатомных спиртов. Из последних особенно ин-тересны дихлоргидрин пентаэритрита (1) и трихлоргидрин пентаэритрита (2), которые получают из безводного HCI и пентаэритрита в присутствии ук-сусной кислоты; их применяют для получения мономера бис (хлорметил) оксациклобутана (3):

1. (CICH2)2C(CH2OH)2, 2. (CICH2)3C-CH2OH, 3. H2C - C(CH2CI)2

O - CH2

2. Хлорирование спиртов, альдегидов и кетонов

При хлорировании спиртов свободным хлором первоначально происхо-дит окисление спирта в альдегид или кетон, после чего протекает последо-вательное замещение атомов водорода в алкильной группе на хлор:

CH3CH2OH CH3CHO

CH3CHO CH2CICHO

CH2CICHO CHCI2CHO

CHCI2CHO CCI3CHO

Если исходным реагентов является альдегид или кетон, то реакция сводит-ся к замещению атомов водорода, находящихся при углеродном атоме, со-седнем с карбинольной группой. Скорость хлорирования карбонильных со-единений пропорциональна их концентрации, не зависит от концентрации хлора и ускоряется кислотами, в частности образующимся HCI. Это дало основание полагать, что лимитирующей стадией является енолизация, за которой следует быстрое взаимодействие с хлором:

+

CH3-CHO CH3-CH=OH [CH2=CHOH] CICH2-CHO

Из продуктов хлорирования спиртов, альдегидов и кетонов небольшое значение имеют 1,1,3-трихлорацетон и гексахлорацетон, а наиболее важ-ным продутом является хлораль CCI3CHO. Эту жидкость (т. кип. 97,80С) применяют для производства ряда ценных пестицидов, особенно трихлор-ацетата натрия и хлорофорса.

В промышленности его получают хлорированием этанола, причем первые стадии протекают с высокой скоростью, а заключительная - сравни-тельно медленно. В связи с этим при периодическом процессе постепенно повышают температуру от 40 до 80 – 900С. При непрерывном синтезе ведут процесс в каскаде из двух барботажных колонн с противотоком газа (рис. 1).

Рис. 1 Реакционный узел для получения хлораля

1,2. Реакционные колонны, 3. Промывная колонна

В первую колонну 1, где охлаждением поддерживают температуру 55 – 650С, подают спирт и смесь хлора с HCI после второй ступени. Жидкость, содержащая смесь хлорацетальдегидов, их ацеталей и полуацеталей, пе-ретекает во вторую колонну, работающую при 900С, куда подают хлор и во-ду. Назначение воды – гидролиз ацеталей, что обеспечивает более полное использование спирта.

Продукт, получаемый после второй колонны, представляет собой смесь хлоральгидрата, полуацеталя хлораля и соответствующих производных ди-хлорацетальдегида. Его обрабатывают концентрированной серной кисло-той, разрушая гидраты и ацетали с образованием свободного хлораля:

CCI3CH(OH)2 + H2SO4 → CCI3CHO + H2SO4∙H2O

Хлораль отстаивают от серной кислоты и перегоняют, возвращая легкую фракцию, содержащую дихлорацетальдегид, на хлорирование. Полученный продукт имеет чистоту 97 – 98%.

Хлораль при действии щелочей разлагается на хлороформ и соль му-равьиной кислоты:

CCI3CHO + NaOH → CHCI3 + HCOONa

На этом был основан способ получения хлороформа из этанола и гипохло-рита кальция, который теперь уже не представляет интереса.

3. Синтез производных кислот

Хлоркарбоновые кислоты алифатического ряда обычно получают хло-рированием карбоновых кислот. Эта реакция катализируется веществами (PCI3, хлориды серы), способными давать с карбоновыми кислотами ангид-риды и хлорангидриды, которые также являются катализаторами. Их влия-ние объясняется тем, что, в отличие от самих кислот, хлорангидриды дос-таточно быстро взаимодействуют с хлором, и за счет образования и рас-щепления ангидридов образуются хлоркарбоновые кислоты:

CH2-COCI CICH2-COCI

CICH2-COCI CICH2-CO-O-CO-CH3

CICH2-CO-O-CO-CH3 CICH2-COOH + CH3-COCI и т. д.

Реакция сопровождается образованием последовательных продуктов замещения при углеродном атоме, соседнем с карбоксильной группой:

CH3COOH CH2CICOOH

CH2CICOOH CHCI2COOH

CHCI2COOH CCI3COOH

CH3CH2COOH CH3CHCICOOH

CH3CHCICOOH CH3CCI2COOH

Состав продуктов регулируют, изменяя соотношение хлора и карбоно-вой кислоты, что облегчается сильным замедлением последующих стадий хлорирования. Реакцию проводят, барботируя хлор-газ через жидкую массу кислоты и катализатора при температуре, постепенно повышающейся от 100 до 150 – 1700С.

Монохлоруксусную кислоту CICH2COOH (кристаллическое вещество) получают хлорированием ледяной уксусной кислоты с уксусным ангидри-дом в качестве катализатора. Выпускают в виде свободной кислоты или на-триевой соли и применяют для производства гербицидов типа хлорфенок-сиацетатов ArOCH2COONa, а также карбоксиметилцеллюлозы Целл. CH2COONa.

Трихлоруксусная кислота CCI3COOH в виде ее натриевой соли являет-ся ценным гербицидом. Ввести три атома хлора в молекулу уксусной кисло-ты трудно, поэтому трихлоруксусную кислоту получают в промышленности окислением хлораля кислотой:

2CCI3CHO + 2HNO3 → 2CCI3COOH + H2O + NO + NO2

Дихлорпропионовую кислоту CH3CCI2COOH получают хлорированием пропионовой кислоты при катализе PCI3 и фенолом. В виде натриевой соли она является широко применяемым гербицидом.

Хлориан CICN (газ с резким запахом, т. конд. 12,60С) является хлоран-гидридом циановой кислоты (HOCN) и в щелочной среде гидролизируется в ее соли. В нейтральной водной среде он стабилен, а в присутствии кислот полимеризуется. Его получают в промышленности хлорированием синиль-ной кислоты в водном растворе:

CI2 + HCN → CICN + HCI

Хлорциан – наиболее летучий компонент смеси и его непрерывно отгоняют из реакционной массы, конденсируют и осушают, поскольку примесь воды вызывает его полимеризацию при хранении. Хлорциан применяют для про-изводства цианурхлорида путем циклотримеризации в присутствии кислот-ных катализаторов:

Цианурхлорид (кристаллическое вещество, т. пл. 1460С) получают по этой реакции в газовой или жидкой фазе. В первом случае процесс ведут при 4000С в трубчатых реакторах с активным углем в качестве катализато-ра; для жидкофазной реакции используют катализ соляной кислотой или хлорным железом при 3000С и 4МПа. Цианурхлорид применяют главным образом для синтеза гербицидов триазинового ряда (симазин, промазин).

4. Хлорирование по атому азота

Имеются превращения, ведущие к образованию связей N-CI (N-хлорирование). К этому способны амиды кислот, причем получаемые при их хлорировании хлорамиды носят не совсем верное название хлораминов. Они содержат активные атомы хлора и получили широкое распространение как мягкие дезинфицирующие и отбеливающие средства. Наибольшее зна-чение имеют хлорамиды арилсульфокислот.

Монохлорамины Б и Т представляют собой мононатриевые соли моно-хлорамидов бензол- или толуолсульфокислот. Их получают, обрабатывая бензол- или толуолсульфамиды гипохлоритом натрия, или при взаимодей-ствии щелочных растворов этих сульфамидов с хлором в водной среде:

Образовавшиеся монохлорамины кристаллизуют и получают в чистом виде. Они растворимы в воде и применяются в виде 0,5 – 5% водных рас-творов.

Дихлорамины Б и Т являются дихлорамидами бензол- или толуолсуль-фокислот. Их получают хлорированием водной суспензии сульфамидов или щелочных растворов сульфамидов:

Дихлорамины осаждаются в кристаллическом виде; их затем отфильт-ровывают и осушают. Они не растворяются в воде и применяются в виде растворов в органических растворителях.

К хлорированию по атому азота способны также карбамид CO(NH2)2 и меламин. Полученный из меламина при хлорировании гексахлормеламин имеет высокое содержание активного хлора и является эффективным де-зинфицирующим препаратом.

К хлорированию по атому азота способны также карбамид CO(NH2)2 и меламин. Полученный из меламина при хлорировании гексахлормеламин имеет высокое содержание активного хлора и является эффективным де-зинфицирующим препаратом.

1. Габриэлян О. С., Остроумов И. Г. Химия. М., Дрофа, 2008;

2. Чичибабин А. Е. Основные начала органической химии. М., Госхимиздат, 1963. – 922 с.;

3. Лебедев Н. Н. Химия и технология основного органического и нефтехи-мического синтеза. М., Химия. 1988. – 592 с.;

4. Паушкин Я. М., Адельсон С. В., Вишнякова Т. П. Технология нефтехими-ческого синтеза. М., 1973. – 448 с.;

5. Юкельсон И. И. Технология основного органического синтеза. М., «Хи-мия», 1968.

Покупка готовой работы
Тема: «Галогенирование кислород- и азотсодержащих соединений»
Раздел: Технология
Тип: Реферат
Страниц: 16
Цена: 1000 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы

Не подошла эта работа?

Воспользуйтесь поиском по базе из более чем 40000 работ

Другие работы автора
Наши услуги
Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 2 дней

Контрольная работа на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

682 автора

помогают студентам

23 задания

за последние сутки

10 минут

среднее время отклика