У нас можно недорого заказать курсовую, контрольную, реферат или диплом

«ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 5 Выпаривание» - Задача/Задачи
- 1 страниц(ы)
Содержание
Введение
Выдержка из текста работы
Заключение
Список литературы
Примечания

Автор: Pingvin78
Содержание
5.1. Рассчитать удельный расход сухого насыщенного водяного пара при выпаривании воды под атмосферным давлением и под вакуумом (разрежением) 0,8 кгс/см2. Абсолютное давление греющего водяного пара в обоих случаях рабс = 2 кгс/см2. Вода поступает на выпарку: а) при температуре 15 °С; б) подогретой до температуры кипения.
5.2. Производительность выпарного аппарата по исходному раствору 2650 кг/ч. Концентрация исходного раствора 50 г/л воды. Концентрация выпаренного раствора 295 г на 1 л раствора. Плотность выпаренного раствора 1189 кг/м3. Найти производительность аппарата по выпаренному раствору.
5.3. Как изменится производительность выпарного аппарата, если на стенках греющих труб отложится слой накипи толщиной 0,5 мм? Коэффициент теплопередачи К для чистых труб равен 1390 Вт/(м2-К). Коэффициент теплопроводности накипи λ = 1,16 Вт/(м.К).
5.4. Производительность выпарного аппарата, обогреваемого насыщенным водяным паром с избыточным давлением ри;зб = 1,5 кгс/см2, необходимо повысить с 1200 до 1900 кг/ч (по разбавленному раствору). Выпаривание производится под атмосферным давлением, температура кипения раствора в аппарате 105°С, раствор подается на выпарку подогретым до температуры кипения. Определить, какого давления греющий пар надо подавать в аппарат. Тепловые потери не учитывать, коэффициент теплопередачи считать неизменным, так же как и конечную концентрацию раствора.
Введение
5.14. Дифенил (С6Н5)2 кипит под атмосферным давлением при 255 °С. Вычислить удельную теплоту испарения, а также удельную теплоемкость жидкого дифенила.
5.15. 48% водный раствор едкого натра кипит под давлением 760 мм рт. ст. при 140 °С, а под абсолютным давлением рабо =0,2 кгс/см2 - при 99 °С. Определить удельную теплоту испарения воды из этого раствора при давлении 0,8 кгс/см2, а также удельную теплоемкость раствора.
5.16. Определить температуру кипения бромбензола под абсолютным давлением рабс =0,1 кгс/см2 по диаграмме линейности и по номограмме XIV. Определить также удельную теплоту испарения бромбензола при этом давлении.
5.17. Определить давление насыщенного пара бензальдегида при 120 °С, пользуясь диаграммой линейности.
5.18. Воспользовавшись правилом Бабо и табл XXXVI, определить температуру кипения 42,5% водного раствора азотнокислого аммония при абсолютном давлении рабс = 0,4 кгс/см2.
5.19. В вакуум-выпарной аппарат (рис. 5.1) поступает 10 т/ч 8% водного раствора азотнокислого аммония при температуре 74 °С. Концентрация упаренного раствора 42,5%. Абсолютное давление в среднем слое кипящего раствора рср = 0,4 кгс/сма. Избыточное давление греющего насыщенного водяного пара риаб 1 кгс/см2. Принять ΔtГэф = 6,1 К. Коэффициент теплопередачи 950 Вт/(м2. К). Потери теплоты составляют 3% от суммы (Qнаг + Qисп). Определить площадь поверхности нагрева выпарного аппарата.
5.20. По данным предыдущей задачи определить абсолютное давление в барометрическом конденсаторе, если гидравлическая депрессия ΔtГс = 1 К, а гидростатическая депрессия ΔtГэф = 6,1 К.
5.21. 2200 кг/ч разбавленного водного раствора упариваются от 7 до 24% (масс.) под атмосферным давлением. Разбавленный раствор подается в выпарной аппарат при 19 °С. Температурная депрессия 3,5 К, гидростатическая 3,0 К, гидравлическая 1,0 К. Избыточное давление греющего насыщенного водяного пара ризб = 2 кгс/см2. Коэффициент теплопередачи 1100 Вт/(м2-К). Определить требуемую поверхность теплообмена в аппарате и расход греющего пара, принимая потери теплоты в окружающую среду в размере 5% от суммы (Qнаг + Qисп) и влажность греющего пара 5%.
5.22. Как изменится производительность выпарного аппарата, работающего под атмосферным давлением, при обогреве насыщенным .водяным паром с избыточным давлением ризб = 1,2. кгс/см*, если в аппарате создать вакуум 0,7 кгс/ом2, а обогрев перевести на пар с избыточным давлением 0,6 кгс/см2? Гидростатический эффект для среднего слоя ΔрГэф = 9,81-103 Па; в обоих случаях считать температурную депрессию 4 К; раствор поступает на выпарку подогретым до температуры кипения в аппарате. Коэффициент теплопередачи считать неизменным. Тепловыми потерями пренебречь.
5.23. В выпарном аппарате концентрируется водный раствор от 14 до 30% (масс.). Греющий насыщенный водяной пар имеет давление (абсолютное) 0,9 кгс/см2. Полезная разность температур 11,2 К. Гидростатическая депрессия ΔtГэф = 3 К. Определить часовой расход разбавленного раствора, поступающего в аппарат, если площадь поверхности теплообмена в нем 40 м4, а коэффициент теплоотдачи составляет 700 Вт/(м2-К). Разбавленный раствор поступает в аппарат подогретым до температуры кипения. Среднее давление в аппарате (абсолютное) 0,4 кгс/см*. Тепловыми потерями пренебречь.
5.24. Определить расход греющего насыщенного водяного пара (абсолютное давление 2 кгс/см2) и площадь поверхности нагрева выпарного аппарата, в котором производится упаривание 1,6 т/ч раствора от 10 до 40 % (масс.). Среднее давление в аппарате (абсолютное) 1 кгс/см2. Разбавленный раствор поступает на выпарку при 30 °С. Полезная разность температур 12 К. Гидростатическая депрессия ΔtГэф = 4 К. Коэффициент теплопередачи 900 Вт/(м2-К). Тепловые потери принять равными 5 % от полезно используемого количества теплоты Qнаг + Qисп.
Выдержка из текста работы
5.25. Раствор поташа упаривается от 8 до 36% (масс.) под вакуумом 0,2 кгс/см2. Начальное количество раствора 1500 кг/ч. Определить количество воды, подаваемой: а) в барометрический конденсатор; б) в поверхностный конденсатор, принимая температуру отходящего конденсата на 5 °С ниже температуры конденсации. Вода в обоих случаях нагревается от 15 до 35 °С.
5.26. В выпарном аппарате производится концентрирование водного раствора от 12 до 38% (масс.) под вакуумом (в конденсаторе) 600 мм рт. ст. (см. рис. 5.1). Расход охлаждающей воды в барометрическом конденсаторе 40 м3/ч, вода нагревается от 14 до 30 °С. Определить часовую производительность выпарного аппарата по разбавленному и концентрированному раствору. Температурной депрессией пренебречь. Атмосферное давление 747 мм рт. ст.
5.27. Вакуум в выпарном аппарате над раствором 0,7 кгс/см4, Расход разбавленного водного раствора, поступающего на выпарку, 2,4 т/ч, его концентрация 12% (масс). Конечная концентрация 32% (масс.). В барометрический конденсатор подается 38,6 м3/ч холодной воды с температурой 12 °С. Определить температуру воды на выходе из барометрического конденсатора. Гидравлическим сопротивлением паропровода и температурной депрессией пренебречь.
5.28. В трехкорпусной выпарной батарее, работающей по прямоточной схеме (см. рис. 5.7), подвергается упариванию 1300 кг/ч водного раствора с начальной концентрацией 9% (масс.) до конечной концентрации 43% (масс.). Вычислить концентрации раствора по корпусам, если известно, что в каждом следующем корпусе выпаривается воды на 10% больше, чем в предыдущем.
5.29. Какое предельное число корпусов может быть в многокорпусной выпарной установке, если избыточное давление греющего насыщенного водяного пара в первом корпусе ризб = 2,3 кгс/см2, остаточное давление в конденсаторе 147 мм рт. ст. Сумму температурных потерь во всех корпусах принять равной 41 К. Допустимая полезная разность температур в каждом корпусе должна быть не меньше 8 К.
5.30. В двухкорпусной установке, работающей по прямоточной схеме, упаривается 1000 кг/ч водного раствора азотнокислого натрия. Начальная концентрация 10% (масс.), конечная после первого корпуса 15% (масс.), конечная после второго 30% (масс.). Конечная температура раствора после первого корпуса 103 °С, после второго 90 °С. Определить, сколько воды испарится во втором корпусе за счет самоиспарения и какой это составит процент от общего количества воды, испаряющейся во втором корпусе.
5.31. В двухкорпусную выпарную установку, работающую по прямоточной схеме, поступает 1000 кг/ч водного раствора хлористого магния. Начальная концентрация раствора 8% (масс.). Концентрация раствора после первого корпуса 12% (масс.). Абсолютное давление над раствором в первом корпусе 1 кгс/см2, во втором корпусе 0,3 кгс/см2. Конечная температура раствора после первого корпуса 104 °С, после второго 77 °С. Определить, до какой конечной концентрации упаривается раствор во втором корпусе, если обогрев второго корпуса осуществляется за счет вторичного пара первого корпуса (отбора экстра-пара нет). Тепловыми потерями пренебречь.
Заключение
5.32. Во второй корпус двухкорпусной установки, работающей по прямоточной схеме без отбора экстра-пара, поступает из первого корпуса 500 кг/ч 16% водного раствора углекислого натрия с температурой 103 °С. Абсолютное давление над кипящим раствором в первом корпусе 1 кгс/см2, во втором корпусе 0,6 кгс/см2. Концентрированный раствор, выходящий из II корпуса с температурой 89°С и концентрацией 28% (масс.), используется в противоточном теплообменнике для подогрева разбавленного раствора, поступающего на выпарку. Пренебрегая тепловыми потерями и депрессией, определить: а) концентрацию разбавленного раствора, подаваемого на выпарку; б) на сколько градусов будет подогрет разбавленный раствор в теплообменнике, если концентрированный раствор выходит из теплообменника с тем-пературой 32 °С. Удельная теплоемкость концентрированного раствора 3,35-103 Дж/(кг-К).
5.33. В двухкорпусную выпарную установку, работающую по прямоточной схеме, поступает 1000 кг/ч водного раствора хлористого кальция. Начальная концентрация раствора 8 % (масс.), конечная 30% (масс.). В первом корпусе абсолютное давление вторичного пара 1 кгс/см2, во втором 0,3 кгс/см2. Конечная температура раствора после первого корпуса 104 °С, после второго 78 °С. В первом корпусе образуется 400 кг/ч вторичного пара. Часть этого пара (рис. 5.5) отбирается на сторону (экстра-пар). Пренебрегая тепловыми потерями, определить, какое количество экстра-пара отбирается.
5.34. В однокорпусный выпарной аппарат (рис. 5.6), работающий с тепловым насосом (сжатие вторичного пара в турбокомпрессоре), поступает разбавленный водный раствор с концентрацией 5% (масс.). Из аппарата выходит 550 кг/ч раствора с концентрацией 15% (масс.). Температурная депрессия
2,5 К. Гидростатическим эффектом и гидравлическим сопротивлением пренебречь. Турбокомпрессор сжимает вторичный пар от 1 до 2 кгс/см2. Тепловые потери составляют 5% от (Qнаг + Qисп). Начальная температура разбавленного раствора 70 °С. Определить: а) сколько приходится добавлять греющего насыщенного водяного пара (пар сухой насыщенный, избыточное давление ризб - 2 кгс/см2); б) какую мощность потребляет турбокомпрессор, если общий к.п.д. его равен 0,72.
5.35. До какой температуры надо охладить горячий 40% водный раствор калиевой селитры, чтобы после охлаждения и выпадения кристаллов концентрация маточного раствора стала вдвое меньше исходной?
5.36. Сколько килограммов кристаллов выделится при охлаждении от 30 до 15 °С 4,2 т раствора соды, содержащего 2,5 моль соды на 1000 г воды? Сода кристаллизуется с 10 молекулами воды. 5.37. Определить необходимую площадь поверхности охлаждения противоточного кристаллизатора, в котором охлаждается от 85 до 35 °С 10 000 кг/ч раствора, содержащего 7,0 моль сернокислого аммония на 1000 г воды. При охлаждении испаряется вода (5% от массы начального раствора). Коэффициент теплопередачи 127 Вт/(м2-К). Охлаждающая вода нагревается от 13 до 24 °С. Определить также ее расход.
Задача 5.37. Определить необходимую площадь поверхности охлаждения противоточного кристаллизатора, в котором охлаждается от 85 до 35°С 10000 кг/ч раствора, содержащего 7,0 моль сернокислого аммония на 1000 г воды. При охлаждении испаряется вода (5% от массы начального раствора). Коэффициент теплопередачи 127 Вт/(м2-К). Охлаждающая вода нагревается от 13 до 24°С. Определить также ее расход.
Список литературы
Примеры и задачи по курсу процессов и аппаратов химической технологии /Учебное пособие/, К.Ф. Павлов, П.Г. Романков, А.А. Носков, 9-ое изд. перераб. и дополнен. Л. Химия,1987-575с.
Примечания
Все задачи решены (цена за одну задачу)
Тема: | «ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 5 Выпаривание» | |
Раздел: | Технология | |
Тип: | Задача/Задачи | |
Страниц: | 1 | |
Цена: | 150 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Удобный личный кабинет
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
Предыдущая работа
ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 4 ТеплопередачаСледующая работа
ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 6 Абсорбция-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 8 Экстракция
2 страниц(ы)
8.1. Построить треугольную диаграмму равновесия для системы вода - уксусная кислота - этиловый эфир при 25 °С, пользуясь данными табл. 8.4. Сравнить полученную диаграмму с диаграммой X, Y - z, Z. (см. пример 8.8).8.2. Определить состав и количество сосуществующих фаз, на которые расслаивается смесь 10 кг воды, 5 кг этилового эфира и 5 кг уксусной кислоты. При удалении какого количества этилового эфира эта смесь перестанет расслаиваться?РазвернутьСвернуть
8.3. Уксусная кислота экстрагируется из водного раствора, содержащего ее 15% (масс.) при 25 °С. Масса исходной смеси 1200 кг. Определить состав и количество конечных продуктов после отгонки растворителя, если экстракция производится чистым эфиром в перекрестном токе. Процесс ведется в две ступени при отношении массы растворителя к массе обрабатываемой смеси 1,5.
8.4. Уксусная кислота экстрагируется в противотоке этиловым эфиром из водного раствора, содержащего 20% (масс.) кислоты. Определить необходимое количество растворителя на 1000 кг/ч исходной смеси и число теоретических ступеней экстрагирования, если экстракт должен содержать 60% (масс.), а рафинат - не более 2% (масс.) кислоты (после отгонки растворителя). -
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 3 Гидромеханические процессы
1 страниц(ы)
3.1. Найти соотношение диаметров частиц свинцового блеска (р = 7800 кг/м3) и кварца (р = 2600 кг/м3), осаждающихся с одинаковой скоростью: а) в воздухе; б) в воде, считая, что осаждение происходит при Rе < 0,2.3.2. С какой скоростью будут осаждаться шарообразные частицы кварца (р = 2600 кг/м3) диаметром 10 мкм; а) в воде при 15 °С; б) в воздухе при 15 и 500 °С?РазвернутьСвернуть
3.3. Какой должна быть скорость воздуха в вертикальной трубе пневматической сушилки, чтобы обеспечить перемещение кристаллов плотностью 2000 кг/м3 с наибольшим диаметром 3 мм? Температура воздуха 60°С. Скорость воздуха должна быть на 25% больше скорости витания частиц.
3.4. Рассчитать скорость восходящего потока воздуха в воздушном сепараторе, необходимую для отделения мелких (d < 1 мм) частиц апатита от более крупных. Температура воздуха 20 °С. Плотность апатита 3230 кг/м3.
3.5. Каким должно быть расстояние между полками пылевой камеры (см. рис. 3.9), чтобы в ней оседали частицы колчеданной пыли диаметром более 15 мкм? Остальные условия такие же, как в примере 3.6.
-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 1 Основы гидравлики
1 страниц(ы)
1.3. Состав продуктов горения 1 кг коксового газа (в кг)) СО2 - 1,45; М2 =8,74; Н2О-1,92. Найти объемный состав продуктов горения.1.4. Разрежение в осушительной башне сернокислотного завода измеряется U-образным тягомером наполненным серной кислотой плотностью 1800 кг/м3. Показание тягомера 3 см. Каково абсолютное давление в башне, выраженное в Па, если барометрическое давление составляет 750 мм рт. ст.?РазвернутьСвернуть
1.5. Манометр на трубопроводе, заполненном жидкостью, показывает давление 0,18 кгс/см2. На какую высоту Н над точкой присоединения манометра поднимается в открытом пьезометре жидкость, находящаяся в трубопроводе, если эта жидкость: а) вода, б) четыреххлористый углерод (рис. 1.23)?
1.6. Высота уровня мазута в резервуаре 7,6 м (рис. 1.24). Относительная плотность мазута 0,96. На высоте 800 мм от дна в резервуаре имеется круглый лаз диаметром 760 мм, крышка которого прикрепляется болтами диаметром 10 мм. Принимая для болтов допустимое напряжение на разрыв 700 кгс/см2, определить необходимое число болтов. Определить также давление мазута на дно резервуара.
1.7. На малый поршень диаметром 40 мм ручного гидравлического пресса (рис. 1.25) действует сила 589 Н (60 кгс). Пренебрегая потерями, определить силу, действующую на прессуемое тело, если диаметр большого поршня 300 мм.
1.8. Динамический коэффициент вязкости жидкости при 50 °С равняется 30 мПа-с. Относительная плотность жидкости 0,9. Определить кинематический коэффициент вязкости. -
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 4 Теплопередача
1 страниц(ы)
4.1. Во сколько раз увеличится термическое сопротивление стенки стального змеевика, свернутого из трубы диаметром 38х2,5 мм, если покрыть ее слоем эмали толщиной 0,5 мм? Считать стенку плоской. Коэффициент теплопроводности эмали 1,05 Вт/(м.К).4.2. Паропровод длиной 40 м, диаметром 51x2,5 мм покрыт слоем изоляции толщиной 30 мм; температура наружной поверхности изоляции t=45°С, внутренней tг = 175°С. Определить количество теплоты, теряемое паропроводом в 1 ч. Коэффициент теплопроводности изоляции λ = 0,116 Вт/(м-К).РазвернутьСвернуть
4.3. Стальная труба диаметром 60x3 мм изолирована слоем пробки толщиной 30 мм и сверху еще слоем совелита (85 % магнезии + 15% асбеста) толщиной 40мм. Температура стенки трубы -110°С, а наружной поверхности изоляции 10 °С. Вычислить часовую потерю холода с 1 м длины трубы.
4.4. Как изменится потеря холода в условиях предыдущей задачи, если внутренний слой сделать совелитовым (б = 40 мм), а наружный - пробковым (δ = 30 мм)?
4.5. Найти температуру внутренней поверхности обмуровки аппарата (рис. 4.19), если температура на наружной поверхности ее 35 °С. Толщина обмуровки 260 мм. Термометр, заделанный на глубину 50 мм от наружной поверхности, показывает температуру 70 °С.
4.6. Вычислить коэффициент теплопроводности для: а) жидкого хлороформа при t = 20 °С; б) сернистого газа при t = 160 °С и абсолютном давлении 1 кгс/сма (~0,1 МПа); в) 25% водного раствора хлористого кальция при t= 30 °С.
4.7. Необходимо испарять 1600 кг/ч жидкости, кипящей при t= 137°С и поступающей в испаритель при этой температуре. Удельная теплота испарения жидкости r = 377•108 Дж/кг. Температура греющего пара должна быть не ниже 150 °С. Определить расход греющего пара: а) сухого насыщенного, риаб = 4 кгс/сма (~0,4 МПа); б) перегретого до 250 °С, ризб = 4 кгс/см2 (~0,4 МПа); в) перегретого до 250°С, риаб = 3 кгс/смя (~0,3 МПа). Удельная теплоемкость перегретого пара 2,14-103 Дж/(кг-К).
Изобразить процессы изменения состояния греющего пара на диаграмме Т - S. Конденсат греющего пара отводится при температуре конденсации.
4.8. До какой температуры будут нагреты глухим паром 2 т раствора хлористого кальция, если расход греющего пара (ра6с = 2 кгс/сма, т. е. ~0,2 МПа) за 2,5 ч составил 200 кг, а расход теплоты на нагрев аппарата и потери теплоты в окружающую среду составляют в среднем 2030 Вт? Начальная температура раствора 10 °С. Удельная теплоемкость раствора 2,5 х 103 Дж/(кг К).
4.9. Определить количество передаваемой теплоты в противоточном конденсаторе, в котором конденсируется 850 кг/ч пара сероуглерода под атмосферным давлением. Пар сероуглерода поступает в конденсатор с температурой 90 °С. Жидкий сероуглерод выхолит из конденсатора при температуре на в °С ниже температуры конденсации. Удельная теплоемкость пара сероуглерода 0,67.103 Дж/(кг-К).
4.10. В кожухотрубчатый конденсатор поступает 120 кг/ч сухого насыщенного пара диоксида углерода под давлением Рабе = 60 кгс/см2 (~6,0 МПа). Жидкий диоксид углерода выходит из конденсатора под тем же давлением при температуре конденсации. Принимая разность температур диоксида углерода и воды на выходе воды из конденсатора 5 К, определить необходимый расход воды, если она поступает в конденсатор с температурой 10 °С.
4.11. Колонна для ректификации жидкого воздуха покрыта слоем тепловой изоляции из шлаковой ваты толщиной 250 мм. Температура жидкости внутри колонны -190 °С, температура воздуха в помещении 20 °С. Какое количество теплоты может проникать из окружающего воздуха в колонну через 1 ма поверхности, если пренебречь термическими сопротивлениями со стороны жидкости, окружающего воздуха и металлической стенки колонны?
4.12. Как изменится коэффициент теплопередачи в аппарате, если заменить стальные трубы диаметром 38x2,5 мм на медные такого же размера: а) в паровом калорифере для воздуха, в котором aвозд = 41 Вт/(м8.К), агр. пара = 11600 Вт/(м2-К); б) в выпарном аппарате, в котором араств = 2320 Вт/(ма-К), агр. пара = 11600 Вт/(мг-К)? Загрязнений поверхности не учитывать.
-
Курсовая работа:
Методика решения нестандартных задач с целыми числами по дисциплине «Теория чисел»
42 страниц(ы)
Введение 3
§1. Представление целых чисел в некоторой форме 4
§2. Уравнения первой степени с двумя неизвестными в целых числах 9§3. Уравнения второй степени с двумя неизвестными в целых числах 14РазвернутьСвернуть
§4. Разные уравнения с несколькими неизвестными в целых числах 16
§5. Неравенства в целых числах 21
§6 Нестандартные задачи с целыми числами в ЕГЭ (Задание С) 23
Заключение 41
Список литературы 42
-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 2 Перемещение жидкостей
1 страниц(ы)
2.1. Насос перекачивает 30%-ную серную кислоту. Показание манометра на нагнетательном трубопроводе 1,8 кгссм2 (~0,18 МПа), показание вакуумметра (разрежение) на всасывающем трубопроводе перед насосом 29 мм рт. ст. Манометр присоединен на 0,5 м выше вакуумметра. Всасывающий и нагнетательный трубопроводы одинакового диаметра. Какой напор развивает насос2.2. Насос перекачивает жидкость плотностью 960 кгм3 из резервуара с атмосферным давлением в аппарат, давление в котором составляет риаб = 37 кгссм2, или ~3,7 МПа (см. рис. 2.1). Высота подъема 16 м. Общее сопротивление всасывающей и нагнетательной линий 65,6 м. Определить полный напор, развиваемый насосом.РазвернутьСвернуть
2.3. Определить к.п.д. насосной установки. Насос подает 380 дм3мин мазута относительной плотности 0,9. Полный напор 30,8 м. Потребляемая двигателем мощность 2,5 кВт.
-
Дипломная работа:
Гранулирование плава аммиачной селитры. Экспериментальная установка
120 страниц(ы)
ВВЕДЕНИЕ 8
1 ЛИТЕРАТУРНЫЙ ОБЗОР 10
1.1 Сырье для получения аммиачной селитры. Нейтрализация азотной кислоты аммиаком 101.2 Схема нейтрализации азотной кислоты под атмосферным давлением 12РазвернутьСвернуть
1.3 Схема нейтрализации азотной кислоты с использованием вакуум-испарителя 15
1.4 Схема нейтрализации азотной кислоты под повышенным давлением 16
1.5 Выпаривание растворов аммиачной селитры 19
1.6 Гранулирование плава аммиачной селитры 27
1.6.1 Гранулирование в башнях 27
1.6.2 Гранулирование в аппарате с кипящим слоем 42
1.7 Охлаждение гранулированной аммиачной селитры 47
1.8 Обработка гранул опудривающими и поверхностно-активными веществами 54
1.9 Очистка газовых выбросов 59
1.10 Патентные исследования 67
ВЫВОДЫ ПО ЛИТЕРАТУРНОЙ ЧАСТИ 75
2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 76
2.1 Определение дисперсности гранулированной аммиачной селитры 76
2.2 Методика проведения исследований и описание экспериментальной установки 82
2.3 Механический расчет 90
ВЫВОДЫ ПО ЭКСПЕРИМЕНТАЛЬНОЙ ЧАСТИ 96
3 МЕТРОЛОГИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ 97
3.1 Цель и задачи работы 97
3.2 Спецификация приборов и средств автоматизации 97
3.3 Функциональная схема автоматизации 97
3.4 Обработка результатов прямых измерений 101
3.5 Порядок ввода в ЭВМ исходных данных и проведения расчетов 105
3.6 Акт метрологической проработки 107
4 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ РАБОТЫ 109
4.1 Характеристика объекта 109
4.1.1 Физико-химические свойства используемых веществ 109
4.1.2 Категорирование помещения по взрывопожароопасности 111
4.1.3 Перечень опасных и вредных факторов, присущих объекту 112
4.2 Производственная санитария 112
4.2.1 Освещение 112
4.2.1.1 Естественное освещение 113
4.2.1.2 Искусственное освещение 114
4.2.3 Метеоусловия 116
4.2.3 Вентиляция 116
4.2.4 Отопление 118
4.2.5 Шум и вибрация 119
4.2.6 Индивидуальные средства защиты 120
4.3 Электробезопасность 120
4.4 Молниезащита 123
4.5 Пожарная безопасность 124
4.6 Защита окружающей среды 125
5 ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ 126
5.1 Затраты на основные и вспомогательные материалы 126
5.2 Энергетические затраты 127
5.3 Амортизационные отчисления 128
5.4 Фонд заработной платы 129
5.5 Смета затрат на проведение исследований 130
5.6 Определение затрат на проведение эксперимента 131
5.7 Составление сетевого графика 133
5.8 Выводы 133
ЗАКЛЮЧЕНИЕ 134
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 135
ПРИЛОЖЕНИЯ 138
-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ, РОМАНКОВ РАЗДЕЛ 2 Перемещение жидкостей
1 страниц(ы)
2.1. Насос перекачивает 30%-ную серную кислоту. Показание манометра на нагнетательном трубопроводе 1,8 кгссм2 (~0,18 МПа), показание вакуумметра (разрежение) на всасывающем трубопроводе перед насосом 29 мм рт. ст. Манометр присоединен на 0,5 м выше вакуумметра. Всасывающий и нагнетательный трубопроводы одинакового диаметра. Какой напор развивает насос2.2. Насос перекачивает жидкость плотностью 960 кгм3 из резервуара с атмосферным давлением в аппарат, давление в котором составляет риаб = 37 кгссм2, или ~3,7 МПа (см. рис. 2.1). Высота подъема 16 м. Общее сопротивление всасывающей и нагнетательной линий 65,6 м. Определить полный напор, развиваемый насосом.РазвернутьСвернуть
2.3. Определить к.п.д. насосной установки. Насос подает 380 дм3мин мазута относительной плотности 0,9. Полный напор 30,8 м. Потребляемая двигателем мощность 2,5 кВт. -
Курсовая работа:
Оборудование участка железной дороги устройствами автоматики и телемеханики
25 страниц(ы)
1 ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ…3
1.1 Исходные данные
2 ОБОРУДОВАНИЕ ПРОМЕЖУТОЧНОЙ СТАНЦИИ УСТРОЙСТВАМИ ЭЛЕКТРИЧЕСКОЙ ЦЕНТРАЛИЗАЦИИ….42.1 Схематический план станции с осигнализованиемРазвернутьСвернуть
2.2 Маршрутизация передвижений по станции….6
2.3 Двухниточный план стации…9
2.4 Характеристики системы ЭЦ….12
2.5 Электрическая схема управления станционным сигналом…13
3 ОБОРУДОВАНИЕ ПЕРЕГОНА УСТРОЙСТВАМИ АВТОБЛОКИРОВКИ…18
3.1 Электрические схемы сигнальных установок автоблокировок.
4 АВТОМАТИЧЕСКАЯ ПЕРЕЕЗДНАЯ СИГНАЛИЗАЦИЯ…21
4.1 Расчет длин участков приближения и времени задержки закрытия переезда
Список используемой литературы….24
-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 3 Гидромеханические процессы
1 страниц(ы)
3.1. Найти соотношение диаметров частиц свинцового блеска (р = 7800 кг/м3) и кварца (р = 2600 кг/м3), осаждающихся с одинаковой скоростью: а) в воздухе; б) в воде, считая, что осаждение происходит при Rе < 0,2.3.2. С какой скоростью будут осаждаться шарообразные частицы кварца (р = 2600 кг/м3) диаметром 10 мкм; а) в воде при 15 °С; б) в воздухе при 15 и 500 °С?РазвернутьСвернуть
3.3. Какой должна быть скорость воздуха в вертикальной трубе пневматической сушилки, чтобы обеспечить перемещение кристаллов плотностью 2000 кг/м3 с наибольшим диаметром 3 мм? Температура воздуха 60°С. Скорость воздуха должна быть на 25% больше скорости витания частиц.
3.4. Рассчитать скорость восходящего потока воздуха в воздушном сепараторе, необходимую для отделения мелких (d < 1 мм) частиц апатита от более крупных. Температура воздуха 20 °С. Плотность апатита 3230 кг/м3.
3.5. Каким должно быть расстояние между полками пылевой камеры (см. рис. 3.9), чтобы в ней оседали частицы колчеданной пыли диаметром более 15 мкм? Остальные условия такие же, как в примере 3.6.
-
Контрольная работа:
8 страниц(ы)
1. Составить схему контроля, сигнализации, регистрации расхода исходной смеси, температуры в легкой фракции и уровня в сепараторе2. Выбрать из справочника приборы.РазвернутьСвернуть
3. Рассчитать среднеквадратичную погрешность контроля.
4. Определить абсолютную и относительную погрешность на отметке 8400 кг/час; 18ºС.; 1,8 м.
5. Составить схему автоматического регулирования давления в сепараторе
6. Выбрать из справочника приборы.
7. Выбрать тип регулятора, исходя из свойств объекта:
- запаздывание 120 с;
- постоянная времени 560с
- коэффициент усиления 1,09.
8. Рассчитать параметры настройки регулятора, если переходный процесс апериодический.
9. Составить принципиальную схему дистанционного управления приводом центрифуги.
10. Предусмотреть автоматическую защиту привода от прекращения подачи исходной смеси.
11. Составить спецификацию на приборы и средства автоматизации.
12. Оформление задания производить на листах А4 условные обозначения приборов выполнить согласно ГОСТ 21.404-85 (данные по приборам https://www.engineer-oht.ru). -
Отчет по практике:
Установка комплексной подготовки нефти Карабашской установки
52 страниц(ы)
1. Краткая история предприятия 3
2. Характеристика сырья, материалов и готовой продукции 6
3. Описание технологического процесса переработки нефти 103.1 Физические основы первичной перегонки нефти 10РазвернутьСвернуть
3.2 Описание технологической схемы УКПН Карабашской установки 13
4. Технологические расчеты процесса и основных аппаратов 23
4.1 Материальный баланс 23
4.2 Расчет атмосферной колонны 25
4.3 Расчет печи 31
4.4 Расчет теплообменника 38
4.5 Расчет холодильника 40
5 Автоматизированная система управления (АСУ) 42
Заключение 50
Список используемых источников 52
-
Дипломная работа:
55 страниц(ы)
ВВЕДЕНИЕ 3
1 УСТАНОВКА ОБРАТНОГО ОСМОСА 5
ЗАДАНИЕ 5
2. РАСЧЕТ АППАРАТА ОБРАТНОГО ОСМОСА 5
2.1 Технологический расчет 52.1.1. Степень концентрирования на ступени обратного осмоса 7РазвернутьСвернуть
2.1.2. Выбор рабочей температуры и перепада давления через
мембрану 7
2.1.3 Выбор мембраны 8
2.1.4 Приближенный расчет поверхности мембраны 12
2.1.5 Выбор аппарата и определение его основных характеристик 13
2.1.6 Секционирование аппаратов в установке 16
2.1.7 Расчет наблюдаемой селективности мембран 19
2.1.8 Уточненный расчет поверхности мембран 21
3.2. Расчет гидравлического сопротивления 23
3. РАСЧЕТ ТРЕХКОРПУСНОЙ ВЫПАРНОЙ УСТАНОВКИ 25
3.1 Технологический расчет 25
3.1.1 Определение поверхности теплопередачи выпарного аппарата 25
3.1.2 Концентрация упариваемого раствора 25
3.1.3 Температуры кипения растворов 26
3.1.4 Полезная разность температур 31
3.1.5 Определение тепловых нагрузок 31
3.1.6 Выбор конструкции выпарного аппарата 34
3.1.7 Расчет коэффициентов теплопередачи 36
3.2 Гидравлический расчет 42
3.3 Механический расчет 43
3.3.1 Расчет проточной части трубного пространства 43
3.3.2 Определение диаметра штуцеров 44
3.3.3 Расчет обечайки аппарата, работающей под внутренним
давлением 45
3.3.4 Расчёт трубной решётки 49
3.3.5 Расчёт опор 50
ЗАКЛЮЧЕНИЕ 51
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 52
-
Реферат:
История добычи и переработки нефти в России
31 страниц(ы)
Введение 3
Глава 1. Основные периоды развития нефтегазовой промышленности 4
1.1. Дореволюционный период в истории добычи и переработки нефти в России 41.2. Второй период – с 1918 по 1931 г. 5РазвернутьСвернуть
1.3. Третий период – с 1931 по 1940 г. 7
1.4. Четвертый период – с 1941 по 1950 г. 9
1.5. Пятый период – с 1950 по 1990 г. 11
1.6. Современный период в развитии добычи и переработки нефти в России 14
Заключение 16
Список литературы 17
-
Задача/Задачи:
ЗАДАЧИ ПАВЛОВ РОМАНКОВ РАЗДЕЛ 4 Теплопередача
1 страниц(ы)
4.1. Во сколько раз увеличится термическое сопротивление стенки стального змеевика, свернутого из трубы диаметром 38х2,5 мм, если покрыть ее слоем эмали толщиной 0,5 мм? Считать стенку плоской. Коэффициент теплопроводности эмали 1,05 Вт/(м.К).4.2. Паропровод длиной 40 м, диаметром 51x2,5 мм покрыт слоем изоляции толщиной 30 мм; температура наружной поверхности изоляции t=45°С, внутренней tг = 175°С. Определить количество теплоты, теряемое паропроводом в 1 ч. Коэффициент теплопроводности изоляции λ = 0,116 Вт/(м-К).РазвернутьСвернуть
4.3. Стальная труба диаметром 60x3 мм изолирована слоем пробки толщиной 30 мм и сверху еще слоем совелита (85 % магнезии + 15% асбеста) толщиной 40мм. Температура стенки трубы -110°С, а наружной поверхности изоляции 10 °С. Вычислить часовую потерю холода с 1 м длины трубы.
4.4. Как изменится потеря холода в условиях предыдущей задачи, если внутренний слой сделать совелитовым (б = 40 мм), а наружный - пробковым (δ = 30 мм)?
4.5. Найти температуру внутренней поверхности обмуровки аппарата (рис. 4.19), если температура на наружной поверхности ее 35 °С. Толщина обмуровки 260 мм. Термометр, заделанный на глубину 50 мм от наружной поверхности, показывает температуру 70 °С.
4.6. Вычислить коэффициент теплопроводности для: а) жидкого хлороформа при t = 20 °С; б) сернистого газа при t = 160 °С и абсолютном давлении 1 кгс/сма (~0,1 МПа); в) 25% водного раствора хлористого кальция при t= 30 °С.
4.7. Необходимо испарять 1600 кг/ч жидкости, кипящей при t= 137°С и поступающей в испаритель при этой температуре. Удельная теплота испарения жидкости r = 377•108 Дж/кг. Температура греющего пара должна быть не ниже 150 °С. Определить расход греющего пара: а) сухого насыщенного, риаб = 4 кгс/сма (~0,4 МПа); б) перегретого до 250 °С, ризб = 4 кгс/см2 (~0,4 МПа); в) перегретого до 250°С, риаб = 3 кгс/смя (~0,3 МПа). Удельная теплоемкость перегретого пара 2,14-103 Дж/(кг-К).
Изобразить процессы изменения состояния греющего пара на диаграмме Т - S. Конденсат греющего пара отводится при температуре конденсации.
4.8. До какой температуры будут нагреты глухим паром 2 т раствора хлористого кальция, если расход греющего пара (ра6с = 2 кгс/сма, т. е. ~0,2 МПа) за 2,5 ч составил 200 кг, а расход теплоты на нагрев аппарата и потери теплоты в окружающую среду составляют в среднем 2030 Вт? Начальная температура раствора 10 °С. Удельная теплоемкость раствора 2,5 х 103 Дж/(кг К).
4.9. Определить количество передаваемой теплоты в противоточном конденсаторе, в котором конденсируется 850 кг/ч пара сероуглерода под атмосферным давлением. Пар сероуглерода поступает в конденсатор с температурой 90 °С. Жидкий сероуглерод выхолит из конденсатора при температуре на в °С ниже температуры конденсации. Удельная теплоемкость пара сероуглерода 0,67.103 Дж/(кг-К).
4.10. В кожухотрубчатый конденсатор поступает 120 кг/ч сухого насыщенного пара диоксида углерода под давлением Рабе = 60 кгс/см2 (~6,0 МПа). Жидкий диоксид углерода выходит из конденсатора под тем же давлением при температуре конденсации. Принимая разность температур диоксида углерода и воды на выходе воды из конденсатора 5 К, определить необходимый расход воды, если она поступает в конденсатор с температурой 10 °С.
4.11. Колонна для ректификации жидкого воздуха покрыта слоем тепловой изоляции из шлаковой ваты толщиной 250 мм. Температура жидкости внутри колонны -190 °С, температура воздуха в помещении 20 °С. Какое количество теплоты может проникать из окружающего воздуха в колонну через 1 ма поверхности, если пренебречь термическими сопротивлениями со стороны жидкости, окружающего воздуха и металлической стенки колонны?
4.12. Как изменится коэффициент теплопередачи в аппарате, если заменить стальные трубы диаметром 38x2,5 мм на медные такого же размера: а) в паровом калорифере для воздуха, в котором aвозд = 41 Вт/(м8.К), агр. пара = 11600 Вт/(м2-К); б) в выпарном аппарате, в котором араств = 2320 Вт/(ма-К), агр. пара = 11600 Вт/(мг-К)? Загрязнений поверхности не учитывать.
-
Курсовая работа:
Производство аммиачной селитры
25 страниц(ы)
Введение 3
1. Теоретическая часть 4
1.1. Актуальность изучаемой проблемы 4
1.2. Сырье, полуфабрикаты, вспомогательный материалы 51.3. Краткая историческая справка 7РазвернутьСвернуть
1.4. Параметры, влияющие на процесс 8
1.5. Технологическая схема производства 11
1.6. Основной аппарат технологической схемы (реактор) 15
2. Технологический расчет 16
2.1.Материальный баланс 16
2.2. Технико-экономические показатели 18
3. Пути снижения себестоимости готового продукта 19
4. Повышение качества готового продукта 20
5. Совершенствование процесса 21
Заключение 22
Список литературы 23