Шпаргалка

«шпаргалки по высшей математике»

  • 23 страниц
Содержание

1. Числовая последовательность. Предел числовой последовательности.

2. Понятие функции. Основные элементарные функции, их свойства.

3. Предел функции. Геометрическая интерпретация. односторонние и бесконечные пределы

4. Бесконечно малые и бесконечно большие функции. Их свойства.

5. теорема о связи бм и бб. теорема о связи предела и бм. Сравнение бесконечно малых функций.

6. Основные теоремы о пределах. необходимые и достаточные условия существования предела

7. замечательные пределы

8. Непрерывность функции. Свойства непрерывных функций.

9. Точки разрыва функции.

10. св-ва ф-ий, непрерывных на отрезке

11.Производная, ее геометрический смысл.

12.производные основных элементарных функций

13.Связь между непрерывностью и дифференцируемостью функции.

14.Основные теоремы ферма, ролля, лангранжа

15.правила дифференцирования

16.уравнение касательной

17.Производные высших порядков. Правило Лопиталя.

18.дифференциал. его геом смысл

19.Возрастание и убывание функции.

20.Экстремум функции. Необходимый и достаточный признак экстремума.

21. наим и наиб значение ф-ии на отрезке

22.Выпуклость и вогнутость графика функции. Точки перегиба.

23.Асимптоты графика функции.

24.Первообразная и неопределенный интеграл.

25.Свойства неопределенного интеграла.

26.Методы интегрирования в неопределенном интеграле.

27.Определенный интеграл. Геометрический смысл определенного

интеграла.

28.Свойства определенного интеграла. Вычисление определенного

интеграла.

29.Методы интегрирования в определенном интеграле.

30.Геометрические приложения определенного интеграла.

31.Несобственные интегралы I рода.

32.Несобственные интегралы II рода.

33.Функции многих переменных.

34.Предел и непрерывность функции

нескольких переменных.

35. Частные производные функции нескольких переменных. Градиент.

Полный дифференциал.

36.Производная функции по направлению.

37. градиент функции

38. экстремумы ф-ий многих переменных

39.Скалярное произведение. Угол между векторами. Условие

коллинеарности и ортогональности векторов.

40.линейная зависимость векторов. теорема о представлении вектора в виде линейной комбинации векторов линейно зависимой системы

41.Матрицы. Операции над матрицами.

42.Определители. Их свойства.

43.Обратная матрица. Теорема о существовании и единственности обратной

матрицы.

44. Системы линейных уравнений. матричная форма записи. условие совместности

45.Решение систем методом Крамера и с помощью обратной матрицы.

46.Решение произвольных систем линейных уравнений.Метод Гаусса. Нахождение опорных решений.

47. декартова система координат. деление отрезка в данном соотношении.

48.Прямая линия на плоскости. Общее уравнение, уравнение с угловым

коэффициентом. частные случаи расположения прямой на плоскости

49.Уравнение прямой, проходящей через данную точку в данном

направлении. Уравнения прямой, проходящей через две данные точки и в отрезках на

осях.

50.Угол между двумя прямыми. Условия параллельности и

перпендикулярности прямых. расстояние от точки до прямой

51. окружность. эллипс.

52.гипербола. парабола

Введение

Величина у называется ф-ей переменной величины х, если каждому элементу множества х ставится в соответствие единственный элемент множ.у. Величину х называют аргументом ф-ии, а у-зависимой переменной. Ф-ия задана явно, если зависимость между х и у выражена уравнением, разрешаемым относительно зависимой переменной у, или неявно (х2+у2=4). Область определения функции-совокупность всех значений, которые может принимать х; область значений-совокупность всех значений, которые может принимать у.

Св-ва: монотонность (ф-ия возрастает, если большему значению аргумента соответствует большее значение ф-ии. Ф-ия убывает, если большему значению аргумента соответствует меньшее значение ф-ии)

Фрагмент работы

Основные теоремы о пределах. Необходимые и достаточные условия сущ конечного предела.

1. Теорема о предельном переходе в равенствах. Если в некоторой окрестности точки значения ф-ий f(x) и g(x) совпадают, то их пределы в этой точке равны.

2.Теорема о предельном переходе в неравенства). Если в некоторой окрестности точки выполняется неравенство f(x)≤ g(x), то верно и неравенство.

3.Теорема. Предел постоянной равен самой постоянной: Док-во. в качестве можно взять любое положительное число.

Примечания

Ко всем теоремам приведены доказательства

Покупка готовой работы
Тема: «шпаргалки по высшей математике»
Раздел: Математика
Тип: Шпаргалка
Страниц: 23
Цена: 200 руб.
Нужна похожая работа?
Закажите авторскую работу по вашему заданию.
  • Цены ниже рыночных
  • Удобный личный кабинет
  • Необходимый уровень антиплагиата
  • Прямое общение с исполнителем вашей работы
  • Бесплатные доработки и консультации
  • Минимальные сроки выполнения

Мы уже помогли 24535 студентам

Средний балл наших работ

  • 4.89 из 5
Узнайте стоимость
написания вашей работы

У нас можно заказать

(Цены могут варьироваться от сложности и объема задания)

Контрольная на заказ

Контрольная работа

от 100 руб.

срок: от 1 дня

Реферат на заказ

Реферат

от 700 руб.

срок: от 1 дня

Курсовая на заказ

Курсовая работа

от 1500 руб.

срок: от 3 дней

Дипломная на заказ

Дипломная работа

от 8000 руб.

срок: от 6 дней

Отчет по практике на заказ

Отчет по практике

от 1500 руб.

срок: от 3 дней

Решение задач на заказ

Решение задач

от 100 руб.

срок: от 1 дня

Лабораторная работа на заказ

Лабораторная работа

от 200 руб.

срок: от 1 дня

Доклад на заказ

Доклад

от 300 руб.

срок: от 1 дня

682 автора

помогают студентам

42 задания

за последние сутки

10 минут

время отклика