Реферат
«Кристаллизация»
- 16 страниц
1. Определение процесса кристаллизации
2. Физико-химические основы процесса кристаллизации
3. Аппараты процесса кристаллизации
Список литературы
Кристаллизация - это переход вещества из газообразного (парообразного), жидкого или твердого аморфного состояния в кристаллическое, а также из одного кристаллического состояния в другое (рекристаллизация, или вторичная кристаллизация); фазовый переход первого рода.
Кристаллизация из жидкой или газовой фазы - экзотермический про-цесс, при котором выделяется теплота фазового перехода, или теплота кристаллизации; при этом изменение энтропии в большинстве случаев составляет [в Дж/(моль.К)]: для простых веществ 5-12, для неорганических соединений 20 - 30, для органических соединений 40-60. Рекристаллизация может протекать с выделением либо поглощением теплоты. В промышленности и лабораторной практике кристаллизацию используют для получения продуктов с заданными составом, содержанием примесей, размерами, формой и дефектностью кристаллов, а также для фракционного разделения смесей, выращивания монокристаллов и др.
Условия, при которых возможна кристаллизация, определяются видом диаграммы состояния. Чтобы кристаллизация протекала с конечной скоростью, исходную фазу необходимо переохладить (перегреть), пересытить кристаллизующимся веществом или внести во внешнее поле, снижающее растворимость кристаллизующейся фазы. В переохлажденной (перегретой) либо пересыщенной фазе происходит зарождение новой фазы - образуются центры кристаллизации, которые превращаются в кристаллы и растут, как правило, изменяя форму, содержание примесей и дефектность. Центры кристаллизации возникают гомогенно в объеме начальной фазы и гетерогенно на поверхностях посторонних твердых частиц (первичное зародыше-образование), а также вблизи поверхности ранее сформировавшихся кристаллов новой фазы (вторичное зародышеобразование). Общее число центров кристаллизации, возникших в единице объема раствора или расплава в 1 с, или суммарную интенсивность их первичного и вторичного образования, находят по формуле:
где - кинетический коэффициент первичного зародышеобразования, который рассматривают в рамках кинетической теории образования новой фазы;
R - газовая постоянная;
T - температура кристаллизации; удельная поверхностная свободная энергия кристаллов;
Vт - молярный объем новой фазы;
Dm=DHS и S = (Т0-7)/Т0 для расплавов;
Am=RT1n(S + 1) и S = (С-С0)/С0 для растворов;
DH-энтальпия кристаллизации;
с - концентрация кристаллизующегося вещества;
Т0 и С0 - соотвующая температура плавления вещества и концентрация насыщенного раствора;
Eакт - энергия активации перехода молекул из среды в центры кристаллизации;
Iат - интенсивность вторичного зародышеобразования в объеме начальной фазы.
Для измерения a, Eaкт и Iвт находят зависимость интенсивности образования центров кристаллизации от температуры, пересыщения и концентрации посторонних твердых частиц.
Величина Iи проходит через один или несколько максимумов (рис. 1) с возрастанием переохлаждения (пересыщения) и увеличивается при механических воздействиях (перемешивание, ультразвук) или под влиянием ионизирующего излучения.
Рис. 1 Зависимость скорости зародышеобразования от переохлаждения расплава InSb: 1 - расплав массой 16 г перегревался в кварцевом тигле на 15 0К выше температуры плавления в течение 9 мин. и затем охлаждался со скоростью 1 град/мин; 2 - то же, на 55 0К в течение 200С.
При росте кристаллов сначала кристаллизующееся вещество адсорбируется на поверхности сформировавшегося кристаллика, а затем встраивается в его кристаллическую решетку: при сильном переохлаждении равновероятно на любом участке поверхности (нормальный рост), при слабом - слоями тангенциально на ступенях, образованных винтовыми дислокациями или двухмерными зародышами (послойный рост). Если переохлаждение ниже некоторого значения, называют пределом морфологической устойчивости, нормально растущий кристалл повторяет форму (обычно округлую) теплового, либо концентрационного поля вокруг него, а послойно растущий кристалл имеет форму многогранника. При превышении указанного предела растут древовидные кристаллы (дендриты). Количественно рост кри-сталлов характеризуют линейной скоростью, равной скорости перемещения их поверхности в нормальном к ней направлении.
В промышленности используют эффективную линейную скорость роста (увеличение в 1 с радиуса шара, объем которого равен объему кристалла):
Iэфф=bSnехр(Eр/RT),
где b - кинетический коэффициент роста (10-5-10-14 м/с), n-параметр роста (обычно 1-3), Ер - энергия активации роста (10-150 кДж/моль).
Параметры b, n и Eр находят, измеряя Iэфф при разных температурах и пересыщениях раствора или переохлаждениях расплава.
С увеличением переохлаждения Iэфф проходит через максимум аналогично Im. Скорость роста может лимитироваться массо - и теплообменом кристаллов со средой (соответственно внешнедиффузионный и теплообменный режимы роста), скоростью химического взаимодействия кристаллизующегося компонента с другими компонентами среды (внешнекинетический режим) или процессами на поверхности кристаллов (адсорбционно-кинетический режим). Во внешнекинетическом режиме Iэфф возрастает с повышением концентраций реагентов и катализаторов, во внешнедиффузионном и теплообменном режимах - с увеличением интенсивности переме-шивания, в адсорбционно-кинетическом режиме - с возрастанием поверхностной дефектности кристаллов и уменьшением концентрации ПАВ. При высоких скоростях роста кристаллы приобретают, число неравновесных дефектов (вакансий, дислокаций и др.). При превышении предела морфологической устойчивости в объем кристаллов попадают трехмерные включения среды, замурованные между ветвями дендритов (окклюзия). Состав кристаллов из-за окклюзии приближается к составу среды тем больше, чем выше Iэфф.
При своем росте кристаллы захватывают любую присутствующую в среде примесь, причем концентрация захваченной примеси зависит от скорости роста. Если кристаллизация происходит в растворе и кристаллы после завершения роста продолжают контактировать со средой, то неравновесно захваченная примесь выбрасывается из кристаллов в среду, а их структура совершенствуется (структурная перекристаллизация). Одновременно в перемешиваемой среде при столкновениях кристаллов друг с другом и со стенками кристаллизатора возникают дополнительные структурные дефекты. Поэтому в системе постепенно устанавливается стационарная дефектность кристаллов, которая зависит от интенсивности перемешивания. В наиболее распространенном случае образования при кристаллизации множества кристаллов (массовая кристаллизация) выделяющаяся фаза полидисперсна, что обусловлено неодновременностью зарождения кри-сталлов и флуктуациями их роста. Мелкие кристаллы более растворимы, чем крупные, поэтому при убывающем пересыщении наступает момент, когда среда, оставаясь пересыщенной относительно последних, становится насыщенной относительно мелких кристаллов.
Рис. 2. Функция распределения кристаллов по размерам (обычным r и наиболее вероятным rA) при изотермической (298 0К) периодической кристаллизации из водного раствора в кристаллизаторе с мешалкой (число Re=104): 1- BaSO4, исходное пересышение S0=500. rA=7,6 мкм; 2 - K2SO4, высаливание метанолом (1:1), rA=1 мкм; t - время процесса.
С этого момента начинаются их растворение и рост крупных кристаллов (освальдoво созревание), в результате чего средний размер кристаллов возрастает, а их число уменьшается. Одновременно в перемешиваемой среде кристаллы раскалываются при соударениях и через некоторое время приобретают стационарную дисперсность, определяемую интенсивностью механического воздействия. Основная количественная характеристика массовой кристаллизации - функция распределения кристаллов по размеру:
f(r,t)=dN/dr,
где N - число кристаллов, размер которых меньше текущего размера r, в единице объема в момент t. Эта функция часто имеет колоколообразный вид (рис. 2). Восходящая ее ветвь чувствительна в основном к зародыше-образованию, росту, раскалыванию и растворению (при созревании) кри-сталлов, нисходящая к росту и образованию их агрегатов. Если среднее квадратичное отклонение размера кристаллов от среднего не превышает половины, последнего, упомянутая функция называется узкой, если превышает - широкой. Изменение функции f(r,t) при кристаллизации описывается уравнением:
где a - коэффициент флуктуации скорости роста кристаллов;
Dк и vк - соответственно коэффициент диффузии и скорость перемещения кристаллов в среде;
Iar и Iр - соответственно интенсивность образования кристаллов данного размера за счет слипания более мелких частиц и раскалывания кристал-лов.
Система уравнений материального и теплового балансов, уравнения (2), а также уравнения, связывающие размеры и скорость роста кристаллов с их формой, дефектностью и содержанием примесей, - основа моделирования и расчета массовой кристаллизации и выбора оптимальных условий ее реализации.
При непрерывной кристаллизации функция f(r,t) в сопоставимых условиях перемешивания шире, чем при периодической кристаллизации, что объясняется разбросом времен пребывания кристаллов в кристаллизаторах непрерывного действия. Чтобы сузить эту функцию, режим кристаллизации приближают к режиму идеального вытеснения, чтобы расширить - к режиму идеального перемешивания. При малом пересыщении системы непрерывная кристаллизация устойчива к флуктуациям внешних условий; при высоком пересыщении его значение и размер кристаллов колеблются в ходе кристаллизации. В химической и смежных отраслях промышленности, а также в лабораториях преимущественно применяют кристаллизацию из расплавов и растворов, реже - кристаллизацию из паровой и твердой фаз. Кристаллизацию из расплавов используют главным образом для отверждения расплавленных веществ и, кроме того, для их фракционного разделения и выращивания монокристаллов. Отверждение веществ в виде отливок (блоков) осуществляют в специальных формах.
В малотоннажных производствах (например, реактивов) обычно применяют отдельные формы определенных размеров или конфигурации, в которых расплав охлаждается путем естественного теплообмена с окружающей средой; в крупнотоннажных производствах (нафталина и др.). Кристаллизацию проводят в секционированных, трубчатых, конвейерных и иных кристаллизаторах со встроенными формами, принудительно охлаждаемыми водой, жидким NH3, хладонами и т. п.
1. Маллин Дж. У. Кристаллизация. пер. с англ., М., 1965;
2. Магусевич Л. Н. Кристаллизация из растворов в химической промышленности, М., 1968;
3. Бэмфорт А. В. Промышленная кристаллизация. пер. с англ., М., 1969;
4. Пономаренко В. Г. Ткаченко К. П., Курлянд Ю. А. Кристаллизация в псевдоожиженном слое. К., 1972;
5. Мелихов И. В., Меркулова М. С. Сокристаллизация, М. 1975;
6. Гельперин Н. И. Носов Г. А. Основы техники кристаллизации расплавов, М., 1975;
7. Кидяров Б. И. Кинетика образования кристаллов из жидкой фазы. Новосиб., 1979;
8. Гельперин Н. И. Основные процессы и аппараты химической технологии. кн. 2. М., 1981;
9. Михалева М. Ф. Контактная кристаллизация. Л., 1983;
10. Тодес О. М., Себалло В. А., Гольцикер А. Д., Массовая кристаллизация из растворов. Л., 1984;
11. Гельперин Н. И., Носов Г. А. Основы техники фракционной кристаллизации. М., 1986. .
Тема: | «Кристаллизация» | |
Раздел: | Технология | |
Тип: | Реферат | |
Страниц: | 16 | |
Цена: | 650 руб. |
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Удобный личный кабинет
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
У нас можно заказать
(Цены могут варьироваться от сложности и объема задания)
682 автора
помогают студентам
42 задания
за последние сутки
10 минут
время отклика
Экзаменационная работа Процесс кристализации и фильтрования установкм, депарафинизация масел.
Тест:
Технология конструкционных материалов (код ТКМ), ответы на 29 заданий по 5 тестовых вопроса
Контрольная работа:
5 задач, вариант 7
Курсовая работа:
Кристаллы
Курсовая работа:
Спроектировать участок производства труб рукавным способом