Контрольная работа
«4 задания по эконометрике, вариант 85»
- 25 страниц
Задание № 1. Линейный парный регрессионный анализ
На основе данных, приведенных в Приложении 1 и соответствующих Вашему варианту (таблица 2), требуется:
1. Рассчитать коэффициент линейной парной корреляции и построить уравнение линейной парной регрессии одного признака от другого. Один из признаков, соответствующих Вашему варианту, будет играть роль факторного (х), другой – результативного (y). Причинно-следственные связи между признаками установить самим на основе экономического анализа. Пояснить смысл параметров уравнения.
2. Определить теоретический коэффициент детерминации и остаточную (необъясненную уравнением регрессии) дисперсию. Сделать вывод.
3. Оценить статистическую значимость уравнения регрессии в целом на пятипроцентном уровне с помощью F-критерия Фишера. Сделать вывод.
4. Выполнить прогноз ожидаемого значения признака-результата y при прогнозном значении признака-фактора х, составляющим 105% от среднего уровня х. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал с вероятностью 0,95.
Задание № 2. Множественный регрессионный анализ
На основе данных, приведенных в Приложении и соответствующих Вашему варианту (таблица 2), требуется:
1. Построить уравнение множественной регрессии. При этом признак-результат и один из факторов остаются теми же, что и в первом задании. Выберите дополнительно еще один фактор из приложения 1 (границы наблюдения должны совпадать с границами наблюдения признака-результата, соответствующего Вашему варианту). При выборе фактора нужно руководствоваться его экономическим содержанием или другими подходами. Пояснить смысл параметров уравнения.
2. Рассчитать частные коэффициенты эластичности. Сделать вывод.
3. Определить стандартизованные коэффициенты регрессии (-коэффициенты). Сделать вывод.
4. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
5. Оценить значимость параметров уравнения регрессии с помощью t-критерия Стьюдента, а также значимость уравнения регрессии в целом с помощью общего F-критерия Фишера. Предложить окончательную модель (уравнение регрессии). Сделать выводы.
Задание № 3. Системы эконометрических уравнений
На основе данных, приведенных в таблице 3 и соответствующих Вашему варианту (таблица 4) провести идентификацию модели и описать процедуру оценивания параметров уравнений структурной формы модели.
Вариант 85
y15
y22
y32
Задание № 4. Временные ряды в эконометрических исследованиях.
На основе данных, приведенных в таблице 10 и соответствующих Вашему варианту (таблица 11), постройте модель временного ряда. Для этого требуется:
1. Построить коррелограмму и определить имеет ли ряд тенденцию и сезонные колебания.
2. Провести сглаживание ряда скользящей средней и рассчитать значения сезонной составляющей.
3. Построить уравнения тренда и сделать выводы.
4. На основе полученной модели сделать прогноз на следующие два квартала с учетом выявленной сезонности.
Исходные данные
Год 2003 2004 2005
Квартал I II III IV I II III IV I II III IV
хt 1095 986 822 1137 1301 1038 780 1435 1593 1658 1363 1737
Общая (полная) дисперсия результативного признака:
.
Значение коэффициента детерминации в случае парной линейной регрессии можно вычислить как квадрат коэффициента корреляции:
.
В общем случае коэффициент детерминации рассчитывается следующим образом:
.
Как видим, значения коэффициентов детерминации совпадают, что подтверждает правильность расчетов.
Коэффициент детерминации показывает, что 12,0% вариации результативного признака (выплаченные дивиденды) объясняется изменением признака-фактора (собственных оборотных средств). Остальные 82% вариации складываются под воздействием иных причин, не рассматриваемых в модели.
3. Оценим качество уравнения с помощью F-критерия Фишера.
F-критерий Фишера заключается в следующем:
Выдвигается нулевая гипотеза о том, что коэффициент детерминации равен 0, и уравнение регрессии статистически малозначимо и ненадежно. Альтернативная ей гипотеза будет заключаться в том, что коэффициент детерминации отличен от 0, т.е. связь между X и Y статистически значима, и уравнение регрессии качественно описывает эту взаимосвязь.
Вычисляется наблюдаемое значение критерия по формуле
.
Находим: .
По таблице значений F-критерия Фишера при уровне значимости α=0,05 и степенях свободы , получаем .
Наблюдаемое значение F-критерия превышает табличное, а значит, нулевая гипотеза H0 о случайной природе полученного уравнения регрессии отвергается в пользу гипотезы H1, свидетельствующей в 95% случаев о его статистической значимости и существенности зависимости размера начисленных дивидендов от объема собственных оборотных средств.
4. Выполним прогноз.Определим значение фактора X, которое составит 1,05 от среднего значения:
(млн. руб.)
Тогда находим прогнозное значение Y:
Закажите авторскую работу по вашему заданию.
- Цены ниже рыночных
- Удобный личный кабинет
- Необходимый уровень антиплагиата
- Прямое общение с исполнителем вашей работы
- Бесплатные доработки и консультации
- Минимальные сроки выполнения
Мы уже помогли 24535 студентам
Средний балл наших работ
- 4.89 из 5
написания вашей работы
У нас можно заказать
(Цены могут варьироваться от сложности и объема задания)
682 автора
помогают студентам
42 задания
за последние сутки
10 минут
время отклика